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Impacts ofwind farms on land surface temperature
Liming Zhou1*, Yuhong Tian2, Somnath Baidya Roy3, Chris Thorncroft1, Lance F. Bosart1

and Yuanlong Hu4

The wind industry in the United States has experienced a
remarkably rapid expansion of capacity in recent years and
this fast growth is expected to continue in the future1–3. While
converting wind’s kinetic energy into electricity, wind turbines
modify surface–atmosphere exchanges and the transfer of en-
ergy, momentum, mass and moisture within the atmosphere4–6.
These changes, if spatially large enough, may have noticeable
impacts on local to regional weather and climate. Here we
present observational evidence for such impacts based on anal-
yses of satellite data for the period of 2003–2011 over a region
in west-central Texas, where four of the world’s largest wind
farms are located7. Our results show a significant warming
trend of up to 0.72 ◦C per decade, particularly at night-time,
over wind farms relative to nearby non-wind-farm regions. We
attribute this warming primarily to wind farms as its spatial
pattern and magnitude couples very well with the geographic
distribution of wind turbines.

Despite debates regarding the possible impacts of wind farms on
regional to global scale weather and climate8–12, modelling studies
agree that they can significantly affect local scale meteorology6,13–16
by increasing surface roughness, changing the stability of the
atmospheric boundary layer (ABL) and enhancing turbulence in
the rotor wakes4–6. However, these studies are based primarily
on numerical simulations of regional and global models, which
owing to lack of observations only crudely represent the effects
of wind turbines by explicitly increasing either surface roughness
length or turbulence kinetic energy. Evidently, more realistic model
parameterizations should be developed and modelling results
should be validated against the observations.

Although observed data on wind speed and turbulence in and
aroundoperationalwind farms are readily available, information on
other meteorological variables does not exist in the public domain.
A recent study using the only available observed temperature data
from an operational wind farm shows a warming effect at night and
a cooling effect during the day6. However, the observed data are
from only two meteorological towers for a period of 1.5 months.
Hence more observational evidence, particularly on larger scales
and for longer periods, is needed.

Satellites provide information on global spatial sampling at
regular temporal intervals and thus have the potential to accurately
monitor and detect the impacts of large wind farms with spatial
detail. This study aims to search for observational evidence of
such impacts from land surface temperature (LST) derived from
Moderate Resolution Imaging Spectroradiometer (MODIS) with
spatial resolutions finer than most wind farms and temporal
resolutions covering both days and nights. LST is the radiometric
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temperature derived from surface emission and is closely related to
land surface radiative properties17.

Our study region (32.1◦–32.9◦N, 101◦–99.8◦W) is centred
around 2,358 wind turbines (Supplementary Figs S1 and S2)
in west-central Texas. We aggregate globally validated 1-km
MODIS eight-day LST (ref. 18) and 16-day albedo19 into anoma-
lies at pixels of 0.01◦ (∼1.1 km) resolution from 2003 to
2011 in winter (December–January–February, DJF) and summer
(June–July–August , JJA). For brevity, here we use the following
acronyms to represent four different groups of pixels: ALL (all
of the pixels); WFM (wind-farm pixels—those with at least one
wind turbine); NWF (non-wind-farm pixels); and NNWF (nearby
non-wind-farm pixels—those NWF pixels that are close to the wind
farms). Besides possible impacts from wind farms, LST variability
over the study region consists of two main components: first,
temporal variability controlled primarily by regional or large-scale
weather and climate conditions; and second, spatial variability at
pixel level that is mostly related to changes in topography and land-
cover types. So minimizing such variability (for example, removing
the regional interannual variability introduced next and using the
anomalies in our analysis) is the key to uncovering wind-farm
impacts. Details about the study region and data processing are
described in the Methods.

We first study the spatial patterns of LST changes and their
spatial coupling with wind turbines by examining the LST
differences between two given periods (referred to as method I). As
the wind turbines in our study region were constructed in stages,
with most built in 2005–2008 (Supplementary Fig. S2), we chose
the first three years (2003–2005) of data to represent the case with
the least impacts and the last three years (2009–2011) of data to
represent the case with the most likely impacts. MODIS LST also
contains the background regional interannual variability that is
unrelated to wind farms (for example, overall the study region is
warmer in 2011 than 2010; Fig. 1). For long-term time series of data,
a low-pass filter ormultiple-year averaging will reduce such a signal.
Given the short period of the MODIS data, for each year we create
a regional mean LST anomaly averaged from all pixels of the study
region (one value inDJF and one in JJA per year; Fig. 1) and subtract
this mean from the original anomalies. Doing so emphasizes the
LST spatial variability on the pixel scale. For example, if a region is
warmer in year y than year x but with different warming rates at
different pixels, the LST change (y minus x) will show the warming
everywhere, but after removing the regional mean warming rate,
the spatial variability of the warming rate can be easily identified.
Note that the resulting warming or cooling rate represents a change
relative to the regional mean value.
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Figure 1 | Interannual variations of regional mean MODIS and ERA LST
anomalies in DJF and JJA averaged over the study region for the period of
2003–2011. a, Daytime. b, Night-time. ERA LST data at 06:00 and 18:00 UT

are chosen to represent the LST at night-time (local midnight) and daytime
(local noon), which roughly correspond to the MODIS measurement times.

Figure 2 shows the MODIS JJA night-time LST differences
between the 2009–2011 and 2003–2005 averages (Fig. 2a) and
between 2010 and 2003 (Fig. 2b). The latter is used to illustrate
the LST change in two individual years. Note that 2003 and 2010
are chosen because their regional mean LSTs are similar in the
study region (Fig. 1b). The WFM pixels are much warmer than
their surrounding pixels and this warming is also observed at
downwind pixels of wind turbines (the prevailing wind is from the
south, Supplementary Fig. S3). Figure 2b exhibits similar features
as Fig. 2a but with a larger magnitude, which is expected as it is
from a single year whereas Fig. 2a is from a three-year average. The
strong spatial coupling between the wind farms and the warming
indicates causation. Similar features are also seen at night-time in
DJF and also at local solar time∼22:30 and∼1:30 (Supplementary
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Figure 2 |MODIS JJA night-time LST and daytime shortwave-albedo
differences for the period of 2003–2011. a,b, LST differences (◦C):
2009–2011 minus 2003–2005 averages (a) and 2010 minus 2003 (b).
c, Albedo differences (unitless): 2009–2011 minus 2003–2005 averages.
Pixels with plus symbol have at least one wind turbine. Note that the
regional interannual variability was removed from the original anomalies to
emphasize the relative LST and albedo changes at pixel level (that is,
method I).

Figs S4–S7). The daytime LST shows a warming effect over most
WFM pixels but their spatial coupling and the warming rate are
muchweaker than those at night-time (Supplementary Figs S4, S5).

We then quantify the impacts of wind farms on LST by
examining the areal mean annual LST differences between WFM
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versus NNWF pixels (WFM minus NNWF; Fig. 3; referred to as
method II). This method has been extensively used to estimate
urban-heat-island effects by comparing observed temperatures in
urban stations with their nearby rural ones20. Unlike method I,
method II does not explicitly remove the regional mean value
but implicitly carries out the same function. Although the time
series is short, we have identified statistically significant warming
trends of 0.724 ◦C per decade (p = 0.005) in JJA and 0.458 ◦C
per decade (p= 0.001) in DJF from 2003 to 2011 over the WFM
pixels relative to the NNWF pixels. In contrast, the daytime LST
shows strong interannual variations and no significant trends.
We also try to define the WFM and NNWF in different ways
and get similar results. On average, the warming is stronger
and better coupled with wind farms during night-time than
daytime and in JJA than DJF. Hence the warming trend is largest
at night-time in JJA.

The diurnal cycle of LST results from the balance of the day/night
contrast in solar heating and the radiative and dynamical cooling
that responds to the temperature difference between the land
surface and the atmosphere21–23. Its magnitude can be modified by
three factors: incoming surface radiation; land surface properties
(for example, elevation, land cover, albedo and emissivity); and
ABL conditions near the surface. Given the small size of our study
region, changes in radiative forcing are likely to be similar over the
entire region. Local effects at pixel level owing to spatial variability
in topography and land-cover types may introduce some LST
variability as the wind turbines are generally built on topographic
high ground, with an average elevation of 749.10 ± 21.38m
(21.38 is one standard deviation), but such effects have already
been minimized by our approach (Supplementary Discussion and
Figs S8–S17). So the warming trends over wind farms shown above
should be mostly related to temporal changes in land surface
properties and ABL conditions.

Some of the LST changes could result from changes in surface
properties associated with the turbine footprint (that is, turbine
blades, towers, access roads and so on)withinwind farms.However,
the footprint area occupies only a small percentage of the total
land area of wind farms because substantial interturbine spacing
is required to maximize turbine efficiency in capturing wind and
also to avoid turbine wake effects7,24. Land surface properties
can be also modified by changes in precipitation, clouds, soil
moisture, vegetation and land cover/use (for example, irrigation,
agricultural practice, urbanization and so on). As there are no
surface observations of these variables available at∼1.1 km,MODIS
data of vegetation greenness, albedo and land cover25 are used to
quantify possible changes in land surface properties. We find that
such changes are small and cannot explain the warming effects over
WFM pixels seen by MODIS (Supplementary Discussion, Tables
S3–S4 and Figs S18–S22). There is a small increase in surface albedo
and a small decrease in vegetation greenness over wind farms,
possibly related to the turbine footprint. For example, the linear
trend of albedo is+0.007 per decade (p= 0.149) in JJA and+0.013
per decade (p= 0.021) in DJF over WFM pixels relative to NNWF
pixels (Fig. 3c), but this increase is too small to produce a notable
daytime cooling26 (Supplementary Figs S4, S5). Some large albedo
changes observed over other NWF regions (Fig. 2c) are probably
owing to changes in weather conditions (Fig. 1; Supplementary
Discussion and Figs S19–S22).

Very probably the diurnal and seasonal variations in wind
speed and the changes in near-surface ABL conditions owing
to wind-farm operations are primarily responsible for the LST
changes described above. The stronger wind speeds in JJA than
DJF and at night-time than daytime (Supplementary Table
S1) probably drive wind turbines to generate more electric-
ity and turbulence and consequently result in the strongest
warming effect at night-time in JJA. The nocturnal ABL is
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Figure 3 | Interannual variations in areal mean differences betweenWFM
and NNWF pixels in DJF and JJA fromMODIS for the period of
2003–2011. LST at daytime (a) and night-time (b) and shortwave albedo
(unitless) at daytime (c). Linear trends (per decade) and significance levels
(p values) estimated using least squares fitting are shown. The 95%
confidence intervals for the linear trends are listed in Supplementary
Table S2. WFM and NNWF pixels are defined in Supplementary Fig. S1.

typically stable and much thinner than the daytime ABL and
hence the turbine-enhanced vertical mixing produces a stronger
night-time effect27.

One striking and contrasting feature of the ABL is the diurnal
evolution with time about its depth and stability28. During daytime
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the ABL is typically deep and unstable in nature, with cooler air
overlying warmer air because of faster solar heating of the surface
than the above air. It becomes much thinner and typically stable
after sunset, with warmer air overlaying cooler air because of faster
radiative cooling of the surface than the above air. Hence, it is
expected that the enhanced vertical mixing in the wakes generated
by wind-turbine rotors will create a warming effect at night-time
and a cooling effect during the day.

Interestingly, our results also show a weak warming effect at
daytime over wind farms (Supplementary Figs S4, S5).We speculate
that the slow development of the daytime unstable and convective
layer28 might play a role. Furthermore, continuous conduction
and convection help to create a well-mixed thick ABL in late
afternoon, which exhibits a statically neutral profile where the
vertical temperature gradients are approximately adiabatic. Hence,
the effect of additional energy transport by turbulence in rotor
wakes on LST is weak at best. Another possibility for the daytime
warming could be the result of reduced convection in turbine wakes
because vertical convective transport is the main mechanism by
which heat is transported away from the surface.

We realize that theMODIS data do contain errors and noise18,19.
Uncertainties also exist in locating wind turbines (for example,
builders may relocate their turbine sites slightly from their original
filing with the Federal Aviation Administration). Our use of spatial
and temporal averaging should largely remove such errors and
uncertainties, whose remaining residuals, if any, cannot accidentally
create the strong spatial coupling between the warming and wind
turbines shown above. Furthermore, as expected, we do see the
increasing extent and magnitude of the spatial coupling with time
between the warming trend and the increase of built wind turbines
from 2000 to 2011 (Supplementary Fig. S12). In addition, the
regional mean LST interannual variability of MODIS matches well
with that of LST data from the European Centre forMedium-Range
Weather Forecasts (ECMWF) Reanalysis (ERA LST; Fig. 1). Some
discrepancies between the two LST data sets are expected, given
their differences in spatial and temporal resolutions (for example,
the timing in the diurnal cycle) and weather conditions (for
example, the MODIS LST is retrieved from clear sky whereas the
ERA LST is from all sky).

To the best of our knowledge, this research is the first in
quantifying the impacts of large wind farms on surface temperature
using satellite data. As this analysis is from a short period over
a region with rapid growth of wind farms, our estimates should
represent the wind-farm effects locally. However, given the present
installed capacity and the projected installation across the world1–3,
this study draws attention to an important issue that requires
further investigation. We need to better understand the system
with observations and better describe and model the complex
processes involved to predict how wind farms may affect future
weather and climate.

Methods
Study region. Texas has the most installed wind-power capacity of any US state1,2.
It has many big wind farms and west-central Texas, which represents the state’s
largest concentration of wind farms and themost active deployment and operations
centre for wind energy, continues to experience rapid growth7. Here, we focus
our study on a region (32.1◦–32.9◦ N, 101◦–99.8◦W; Supplementary Fig. S1) in
west-central Texas, with a total area of∼10,005 km2 (112.8 km×88.7 km).

Geographic location of wind turbines. We use the database
of obstruction evaluation/airport airspace analysis at the FAA
(https://oeaaa.faa.gov/oeaaa/external/portal.jsp) to locate wind farms. To
promote air safety and the efficient use of the navigable airspace, the FAA requires
any organization that plans to sponsor any construction or alterations that may
affect navigable airspace to file a notice of proposed construction or alteration.
It has the detailed record for each wind turbine built, altered or proposed in
the period of 1988–2011. We downloaded all the records and identified wind
turbines built in our study region based on their locations (latitude and longitude).
The existence of these wind turbines can be also verified through Google Earth

where each turbine is visible. In total, there are 2,358 wind turbines built as of
17 November 2011 (Supplementary Fig. S2).

MODIS data. We use the Collection 5 globally validated MODIS products of
surface shortwave albedos, land cover and LST at 1 km resolution. MODIS
instruments (Terra and Aqua) image the entire Earth’s surface every one to
two days, passing across the Equator at around local solar time ∼10:30 (Terra)
and ∼13:30 (Aqua) during daytime and ∼22:30 (Terra) and ∼1:30 (Aqua)
at night. As daily MODIS data have gaps and missing values, we downloaded
from https://lpdaac.usgs.gov/get_data eight-day average LST (ref. 18) of Terra
(MOD11A2) and Aqua (MYD11A2) and 16-day albedos19 (MCD43B3) and yearly
land cover25 (MCD12Q1) retrieved by combining the reflectance from Terra and
Aqua. The MODIS data represent the best quality retrieval possible from clear-sky
conditions over each composite period. They have been used extensively in a
variety of areas and proved to be of high quality. For example, validation studies
indicate that the errors of MODIS albedos are mostly <5% (ref. 29), the MODIS
LST is generally better than 1K (ref. 18) and the MODIS land cover is about 75%
correctly classified25. For each pixel we aggregate the MODIS eight-day average
LST into seasonal means (DJF and JJA) and calculate anomalies (referred to as
seasonal anomalies) relative to the 2003–2011 climatology. The Terra and Aqua
anomalies are then combined to produce daytime (averages of∼10:30 and∼13:30)
and night-time (averages of ∼22:30 and ∼1:30) data. As the MODIS data are
available in March 2000 for Terra and July 2002 for Aqua, there are in total nine
years of the MODIS seasonal anomalies from 2003 to 2011. The MODIS albedos
are processed similarly to create winter (DJF) and summer (JJA) anomalies. The
MODIS annual land-cover map is available at 500m resolution until 2009 and is
reprojected into our study region using nearest-neighbour resampling. TheMODIS
data are achieved by tile (each tile represents a 10◦ by 10◦ grid cell) in the sinusoidal
projection, which has a tilt angle of ∼45◦ relative to local latitude/longitude. So
the MODIS data were reprojected into pixels at 0.01◦ resolution. In total, there are
9,600 pixels (120 columns×80 lines) over the study region.

Reanalysis data. We also use LST data from the ECMWF (ref. 30) and wind
data from North American Regional Reanalysis (NARR; ref. 31) for the
period of 2003–2011. Note that the NARR has a higher spatial resolution
at 32 km but does not provide LST and so the ERA LST at 0.75◦ grid
boxes is used. Monthly means of NARR winds at 30m above the surface
were downloaded from http://www.emc.ncep.noaa.gov/mmb/rreanl/. The
climatological winds in DJF and JJA are created to help us identify downwind
directions of wind farms and understand wind statistics (Supplementary
Fig. S3 and Table S1). Monthly means of ERA LST were downloaded from
http://data-portal.ecmwf.int/data/d/interim_mnth/. Like the MODIS LST, the
ERA LST was averaged into seasonal means and anomalies and then reprojected
into our study region at 0.01◦ resolution using bilinear interpolation. As the
reanalysis is provided at 00:00, 06:00, 12:00 and 18:00 universal time (ut) in ERA
and at 00:00, 03:00, 06:00, 09:00, 12:00, 18:00 and 21:00 ut in NARR, the reanalysis
wind and LST at 06:00 and 12:00 ut are chosen to represent the data at night-time
(local midnight) and daytime (local noon), which roughly correspond to the
MODIS measurement times.
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