Preliminary Engineering Report

Shelter Cove Water Recycling and Reuse Project Shelter Cove, CA

March 4, 2016

Prepared For: Shelter Cove Resort Improvement District No. 1

Prepared By: LACO Associates, Inc. 21 W. 4th Street Eureka, California 95501 707 443-5054

Project No. 8022.08

advancing the quality of life for generations to come

Design
Planning
Engineering
Geology and Geotechnical
Environmental Science
Materials Testing

Survey Drilling

800 515-5054 www.lacoassociates.com Eureka | Ukiah | Santa Rosa Prepared by: Paul Gregson, P.E.

Reviewed by: David Nicoletti, P.E.

1.0	Intro	o d u c t i o r	n and	Scop	е							5
	1.1	Introdu	ction	a n d	Exec	utive	Sum	mary		• • • • •		5
	1.2	Purpos	e		• • • • • •					• • • • •		6
2.0	Proj	ect Pla	nning	Areo	l					• • • • •		6
	2.1	Locatio	on		• • • • • •					• • • • •		6
	2.2	Area C	harac	teris	tics					• • • • •		6
	2.3	Enviror	nment	al Re	sourd	ces P	resen	†		• • • • •		7
	2.4	Commu	nity E	ngag	e m e r	n†						7
3.0	Wat	er Supp	oly Ch	arac	teris	tics c	ınd F	acili	ties.	• • • • •		8
	3.1	Water	Supp	уЅу	s t e m					• • • • •		8
	3.2	Water	Supp	у Мо	anage	e m e n 1						9
4.0	Exis	ting Wo	aste w c	ater	Treat	ment	Faci	litie	S	• • • • •		. 10
	4.1	Existin	g Tre	atm e	nt Fa	ciliti	es					. 10
		4.1.1	Colle	ction	Sys	tem						. 10
		4.1.2	Wast	e w a t	er Tr	eatm	ent P	lant				. 10
		4.1.3	Exist	ing R	есус	led V	Vater	Tre	atm e	nt S	yster	m 1 1
		4.1.4	Terti	ary F	iltra	tion.						. 1 1
		4.1.5	Recyc	ele d	Wate	er Qu	ality			• • • • •		. 1 1
		4.1.6	Stora	g e	• • • • • •					• • • • •		. 1 1
		4.1.7	Oper	atior	nal M	anag	e m e n	†		• • • • •		. 11
	4.2	RID Ra	tes ar	nd Ch	arge	s						. 1 2
5.0	Nee	d for Pi	roject									. 13
	5.1	Water	Conse	rvat	ion .							. 13
	5.2	Fire Pr	otect	ion								. 1 3

	5.3	Growth Rate1	3
6.0	Prop	oosed Facilities1	4
	6.1	General Project Information	4
	6.2	Rules and Regulations1	4
	6.3	Operator Classification	4
	6.4	System Maintenance	5
	6.5	Untreated Wastewater Quality1	5
	6.6	Proposed Expanded Tertiary Treatment1	6
	6.7	Operations and Maintenance Manuals1	7
	6.8	Plant Reliability Features	7
	6.9	Supplemental Water Supply	8
	6.10	Planned Monitoring and Reporting Program1	8
	6.11	Contingency Plan1	8
	6.12	2 Standby Power	9
7.0	Recy	ycled Water Distribution System	9
8.0	U s e	Areas	9
	8.1	Irrigation1	9
	8.2	Equipment Marking2	0
	8.3	Signage 2	0
	8.4	Protection Methods	0
	8.5	I m p o u n d m e n t s	1
	8.6	Cooling 2	1
	8.7	Groundwater Recharge 2	1
	8.8	Dual-Plumbed Use Areas	1
	8.9	Other Industrial Areas	1

	8.10	Other	Uses	2 2
	8.11	Use Ar	ea Design	2 2
	8.12	Use Ar	ea Inspections and Monitoring	2 2
	8.13	Employ	ee Training	2 2
9.0	Prop	osed P	roject	2 2
	9.1	Constr	aints	2 2
	9.2	Availa	ble Technologies	2 3
	9.3	Non-G	ranular Media Filter (Fuzzy Filter TM)	2 3
	9.4	Cloth A	Media Filter	2 4
	9.5	Sand F	ilters	2 5
	9.6	Enviror	nmental Impacts	2 6
		9.6.1	Air Quality	2 6
		9.6.2	Biological Impacts	2 7
		9.6.3	Hazards	2 7
	9.7	Geolog	gic Impacts	2 8
	9.8	Constru	uction	2 8
	9.9	Cost Es	stimates	2 9
	9.10	Securit	ty	2 9
	9.11	Permit	Requirements	3 0
	9.12	Annual	Operation and Maintenance Costs	3 1
	9.13	Project	t Sizing and Alternative Analysis	3 1
10.0	Refe	rences		3 1
Figu	res			
	Figure 1	1	Location Map	

Figure 2 Water Sources and WWTP Discharge Point

Figure 3 Land Use Map

Figure 4 Service Boundary Map
Figure 5 Facility Flow Diagram

Figure 6 Reclamation Area Flow Map

Figure 7 Reclamation Area
Figure 8 Topographic Map

Figure 9 Groundwater Basins Map

Appendix A

Water Quality Results

Appendix B

2013 RID System Audit

Appendix C

"146,000-Gallon Water Theft in Shelter Cove"

Appendix D

Sample Recycling Water Use Agreement

Appendix E

Monitoring and Reporting Program in Order No. R1-2015-0017 of NPDES Permit No. CA0023027

Appendix F

Do Not Drink Sign

Appendix G

Recycled Water Sign Used by Fire Trucks

Appendix H

Recycled Water Truck Program Guidelines

1.0 INTRODUCTION AND SCOPE

1.1 Introduction and Executive Summary

Shelter Cove Resort Improvement District No. 1 (RID) was established in 1965 and provides multiple services to the community of Shelter Cove in Humboldt County, California (Figure 4). These services include potable water, sewer, and electricity. In addition, RID also manages the greenbelt areas within the community, as well as the airport and the volunteer fire department. RID is governed by a five member board of directors who are elected to four-year terms by the residents of Shelter Cove.

The majority of potable water obtained by RID comes from Telegraph Creek, although RID also operates and maintains 13 groundwater wells. RID's water sources have limited capacity, making them highly vulnerable to drought and seasonal flow restrictions. Available capacity for water withdrawal is constrained by RID's current permitted water rights, which mandate RID to maintain a minimum flow of 0.775 cubic feet per second (cfs) in Telegraph Creek at all times. RID has been unable to account for approximately 30 percent of the water it produces, and RID staff suspect that water is being stolen for irrigation, which they hope to reduce by offering recycled water.

RID provides wastewater services to homes in the Shelter Cove community (see Figure 4) and consists of 464 customers, of which approximately 95 percent are residential and 5 percent commercial. The wastewater treatment system is regulated by the California Regional Water Quality Control Board (RWQCB) under a National Pollutant Discharge Elimination System (NPDES) waste discharge permit; RID discharges the majority of its wastewater into the Pacific Ocean. The ocean discharge occurs near the King Range National Conservation Area, an area of special biological significance located adjacent to a Marine Protected Area. In addition, RID currently treats a portion of its wastewater to recycle standards to irrigate the community's 9-hole golf course. RID produces a high-quality wastewater effluent and consequently also produces high quality tertiary recycled water; however, the filtration system fails regularly, and RID staff believes it needs to be replaced. Additionally, they would like to expand the system to increase production.

In response to the prolonged drought and various state mandates related to water conservation, RID endeavors to reduce water diversions from Telegraph Creek by expanding the existing recycled water program and making this recycled water available for public use and for fire department use. By offering recycled water to permitted community members, RID hopes to reduce its water losses, conserve water, and have additional water available for fire protection. Expansion of RID's water recycling program would include increasing the system's current capacity to treat recycled water through the installation of a new filtration system and the installation of recycled water storage tanks to store the recycled water. In addition, a hydrant will be installed for the fire department to fill its fire trucks, and a secured public recycled water filling station for authorized users will be added.

The State Recycled Water Policy adopted by State Water Resources Control Board strongly encourages the use of recycled water where feasible. Shelter Cove is located in a high fire risk area¹, and the Shelter

U.S department of the Interior, Bureau of Land Management, Wildfire Protection, California 2011

Cove Fire Department typically responds to an average of 30 wildfires located within two miles of the Shelter Cove community each year. The availability of recycled water for fire protection will not only preserve potable water but will also add to RID fire-protection measures.

1.2 Purpose

The proposed project is to replace and expand RID's existing water recycling system and to reduce water demands on the potable water distribution system. The expansion will provide for the production of more recycled water to be used for fire protection services, provide water for public use to authorized users, and use the excess water to irrigate the community golf course. This Preliminary Engineering Report (PER) will describe the proposed proces, and how the proposed project will comply with the current State of California Water Recycling Criteria, as contained in Title 22, Sections 60301 through 60355 of the California Code of Regulations (CCR). The Water Recycling Criteria prescribes the following:

- Recycled water quality and wastewater treatment requirements for the various types of allowed
 uses.
- Use area requirements pertaining to the actual location of use of the recycled water.
- Reliability features required in the treatment facilities to ensure safe performance.

Prior to the implementation of all recycled water projects, the Water Recycling Criteria requires the submission of a PER to the RWQCB and the Department of Drinking Water section of the Water Board. The March 2001 Guidelines for the Preparation of an Engineering Report for the Production, Distribution and Use of Recycled Water (hereinafter Guidelines), prepared by the RWQCB, Division of Drinking Water and Environmental Management, Drinking Water Program, Recycled Water Unit, and Title 22 of the CCR have been utilized for the preparation of this PER.

2.0 PROJECT PLANNING AREA

2.1 Location

Shelter Cove is a small, rural community comprised primarily of residential homes and is located in the southwestern corner of Humboldt County, California (Figure 1). Perched along the King Range Mountains and surrounded by the King Range National Conservation Area, Shelter Cove's steep terrain allows for stunning views of the Pacific Ocean, which is the primary draw for people who live there (Figure 8 – Topographic Map). Shelter Cove is accessed via a single paved road, Shelter Cove Road, connecting the community to the adjacent towns of Whitethorn, Redway, and Garberville. The majority of the businesses consist of a myriad of hotels, motels, and homes that double up as lodging facilities situated near the lowest reaches of Shelter Cove. A 9-hole golf course wraps around the single runway of Shelter Cove Airport. Additionally, a boat launching station and boat storage facility are available for sport and commercial fishing.

2.2 Area Characteristics

Shelter Cove is located on the California's Lost Coast where the King Range meets the Pacific Ocean. The hydrologic features of the area include the Pacific Ocean and several creeks. All of the creeks originate within the Shelter Cove boundary and drain into the Pacific Ocean. There are two major creeks and two seasonal creeks. The two major creeks with year-round flows are Telegraph Creek and Humboldt Creek

(Figure 2). The two seasonal creeks are Dead Man's Gulch Creek, draining the south sections of Shelter Cove's steep terrain, and an unnamed creek draining the northern parts of Shelter Cove.

There is no groundwater basin in the Shelter Cove area recognized by the California Department of Water Resources (Figure 9). However, there are several areas where fractures in the underground rock formations have allowed for limited storage of rain water. Several wells have been constructed to harvest this water resource. The wells are shown in Figure 2.

The land use of Shelter Cove area mostly consists of Rural Residential, Open Space/Natural Resource, and Public Lands/Public Resource. There are also areas near the airport designated as Residential Medium Density, Commercial, and Public Facility. Small packets of Commercial land use also exist throughout Shelter Cove area (Figure 3). No change in land use is anticipated.

The current population of Shelter Cove is approximately 700 people. While exact historical population data for Shelter Cove is sparse, the population growth has been estimated using water service connections data. At the end of the 2006/2007 fiscal year there were 546 water connections. Over the past nine years, 40 new connections have been added, resulting in 586 current connections. Using this data, the estimated population growth in Shelter Cove is slightly below one percent per year.

Many of the lots in Shelter Cove cannot be built on due to the steep terrain, and a large portion of the land will remain undeveloped.

2.3 Environmental Resources Present

The site is flat, planted with non-native grass, and contains no trees or shrubs. Review of available information on the Humboldt County Web GIS and the US Fish and Wildlife Service's National Wetland Inventory showed no wetland on the site. An unnamed creek runs from west to east between the waste water treatment plant and the proposed tank site. The proposed pipeline route from the WWTP to the proposed storage tanks would follow the existing pipeline route along Lower Pacific Drive to the northwest corner of the airport runway. This route allows the pipeline to cross the unnamed creek without inducing additional impacts, as the route is adjacent to an existing road and in the same location as the existing recycled water pipeline.

No special status, rare, threatened or endangered species have been identified in the project area. However, a native grass, California oatgrass (Danthonia california), was found along the proposed pipeline route. California oatgrass is not a listed sensitive species.

2.4 Community Engagement

A CEQA Initial Study and Mitigated Negative Declaration are being prepared in conjunction with this project. The CEQA process provides for public comment and feedback on the project for a 30-day period. During the 30-day period, public notice is posted at the project site, with the Humboldt County Recorder, and at the RID office. A copy of the entire document will be available for public review at the RID office for the 30 day period. A notice may also be published in local newspapers. The document will be submitted to the State Clearinghouse and made available to public agencies for review. The RID Board of Directors must agendize and adopt the document at a public meeting that allows for public comment. This provides ample opportunity for the community to provide feedback on the merits of the project as a whole.

A Coastal Development Permit is required for the project and will be administered by the County of Humboldt. This also provides opportunity for the public to provide feedback on the project. All materials submitted to the County become public information, and prior to the Zoning Administrator or Planning Commission making a determination on the project, a notice is published in a local newspaper and mailed to all owners and occupants within 300 feet of the project site.

Additionally, RID will conduct public outreach and education on the use of recycled water prior to allowing private use of the water. RID proposes to prepare a recycled water monitoring plan and to provide public education on the use of recycled water.

Once interested community members have agreed to abide by the requirements for the use of recycled water, RID will allow them access to recycled water from a secure filling station.

3.0 WATER SUPPLY CHARACTERISTICS AND FACILITIES

3.1 Water Supply System

RID is the sole water supply for Shelter Cove. The primary water source is from Telegraph Creek through a treatment plant and pump station. There are also 13 active wells with enough temporary capacity to supply roughly half of the system's water demands. The wells allow RID to reduce their withdrawals from Telegraph Creek, which is necessary during portions of the summer months to maintain the minimum required creek bypass flow. The wells are not part of a recognized aquifer, and no groundwater management plan is required. The closest recognized groundwater basin is located 25 miles northeast of Shelter Cove (Figure 9).

The District monitors the wells and turns them off when the water groundwater levels get too low. Table 1 lists the monthly average, maximum, and minimum production amounts from each well from January 2013 to October 2014. The Parson well was recently brought online in October 2014 and has minimal historical data available. The water quality of the wells meets the Drinking Water Division's standards. A summary of the wells and Telegraph Creek water quality is presented in Appendix A.

The system's maximum day demand (MDD) is 476,000 gallons, and the average day demand (ADD) of the system is 93,600 gallons.

Table 1. Monthly average, maximum, and minimum annual production amounts for each active water source.

Source	Average (gal/month)	Max (gal/month)	Min (gal/month)
Rick Spring	148,190	585,470	2,300
Jerry Well	62,186	221,333	3,291
Jack Well	189,951	340,190	94,697
Kelly Well	19,531	44,881	6,134
Joe Well	48,526	106,814	898
John Well	145,136	334,730	38,372

Source	Average (gal/month)	Max (gal/month)	Min (gal/month)
Larry Well	77,876	195,265	21,071
Ted Well	43,149	140,175	13,539
Rick Well	102,166	286,813	45,927
Lot W Well	295,509	522,695	57,005
Greenbriar Well	334,683	694,727	100,090
Rick Well #2	118,419	264,224	58,426
Lot W #2 Well	393,645	699,365	153,183
Parsons Well	133,593	133,593	133,593
Telegraph Creek	2,066,500	3,838,000	691,000
Total	4,179,061	8,408,276	1,419,526

There are no new drinking water facilities planned, but RID is exploring the possibility of retaining stormwater runoff near the outlet of Humboldt Creek and utilizing that retained water as an emergency water supply due to extended drought conditions.

Additionally, a limited amount of recycled water is produced by the WWTP for the purpose of golf course irrigation. The recycled water treatment system is described in Section 4.1 – Existing Treatment Facilities.

3.2 Water Supply Management

There are currently a total of 609 users of RID's water system. These users are primarily residential, but there are 23 commercial users. RID's rate structure can be found in Table 2. Currently, RID does not have a different rate structure for residential versus commercial. The total gross annual income from water distribution payments for the 2013/14 fiscal year was \$258,390.36 (Table 3). These 609 total users equates to 804 equivalent dwelling units (EDUs) (Table 4).

Table 2. Rate Structure

Charge Type	Monthly Rate	Unit
Service Charge	\$8.75	Fixed
1st 500 cu. Ft.	\$8.75	Fixed
Next 1500 cu. Ft.	\$5.00	Per 100 cu. Ft.
Over 2000 cu. Ft.	\$7.50	Per 100 Cu. Ft.
Capital Facility Charge	\$8.00	Fixed

Table 3. Annual income for fiscal year 2013/14

User Type	First 500 cu. Ft @ \$8.75	501-2000 cu. Ft @ \$5.00 per 100 cu. Ft	All Additional cu. Ft	Service Charge	Billing Usage Total	Capital Facilities Charge	Annual Income Totals
Residential							
(Single-	\$54,502.75	\$45,846.35	\$12,296.06	\$57,321.25	\$169,966.41	\$52,312.00	\$222,278.41
Family)							
Residential	\$2,231.25	\$1,583.55	\$40.23	\$2,275.00	\$6,130.03	\$2,088.00	\$8,218.03
(Multi-							
Family)							
Commercial	\$2,397.50	\$6,076.40	\$14,780.27	\$2,423.75	\$25,677.92	\$2,216.00	\$27,893.92
Industrial	-	-	-	-	-	-	-
Annual Totals	\$59,131.50	\$53,506.30	\$27,116.56	\$62,020.00	\$201,774.36	\$56,616.00	\$258,390.36

Table 4. Equivalent Dwelling Unit (EDU) Calculation

User Type	Average Monthly Water Usage (Gal)	Number of Users	Average Monthly Usage per Connection (Gal)	Number of EDU's
Residential (Single-Family)	1,777,600	550	3,232	550
Residential (Multi-Family)	78,729	23	3,423	24
Commercial	269,077	23	11,699	83
Industrial	-	-	-	-
Municipal (RID)	473,434	13	36,418	146
	Total Users:	609	Total EDUs:	804

4.0 EXISTING WASTEWATER TREATMENT FACILITIES

4.1 Existing Treatment Facilities

4.1.1 Collection System

RID provides wastewater services to the western portions of the Shelter Cove community (Figure 4). As of 2015, there are 464 sewer connections of which approximately 95 percent are residential and the remaining 5 percent commercial. The system incorporates both gravity mains and force mains with nine lift stations.

4.1.2 Wastewater Treatment Plant

RID's wastewater treatment plant is an oxidation ditch treatment system consisting of headworks, two oxidation ditches, two secondary clarifiers, a chlorine contact chamber, and sludge drying beds (Figure 5). Wastewater gravity-flows into the headworks and then flows to the oxidation ditches to remove biochemical oxygen demand (BOD). From the oxidation ditches, effluent flows into one of two clarifiers to

recycle the treatment bacteria back to the oxidation ditches. Next, the effluent enters the chlorine contact chamber for disinfection, and the effluent is de-chlorinated with sulfur dioxide before being discharged to the ocean. No additional facilities are required to comply with waste discharge requirements.

The facility has a permitted average dry weather treatment capacity of 0.17 million gallons per day (MGD), an average wet weather capacity of 0.27 MGD, and a peak weather treatment capacity of 0.77 MGD. RID's wastewater flows currently range between 0.127 MGD dry weather flow and 0.3 MGD wet weather flow. No hourly flow variations are available. RID is operating at approximately 30 percent of its dry weather capacity, and 39 percent of its peak wet weather flow capacity.

4.1.3 Existing Recycled Water Treatment System

RID has a tertiary treatment system consisting of pumps and filters that have the ability to produce roughly 40,000 GPD of recycled water. During the late spring, summer, and early fall months, the tertiary treated water is pumped to a pond for storage and for application to the golf course putting greens.

The recycled water is dosed with a polymer (ProPac 9890) as a coagulant, then pumped to sand filters, and finally directed to a pond located near the golf course for storage. The water is then pumped from the pond to irrigate the golf course's putting greens at night.

4.1.4 Tertiary Filtration

The filtration system is composed of two downflow continuous backwash filters, each with a surface area of seven square feet. The maximum design capacity of each filter is 30 gallons per minute (GPM). The filtration system receives effluent from the chlorine contact basin via a 0.5-horsepower (HP) centrifugal pump. The treated effluent is dosed with chlorine before being discharged to the golf course's storage pond.

The filtration system fails on a regular basis and operators have difficulty keeping the system operational. Operators have expressed the view that the system needs to be entirely replaced.

4.1.5 Recycled Water Quality

RID produces a high quality wastewater effluent which makes it easy to meet Title 22 requirements for recycled water. The recycled water filter currently produces an effluent with an average turbidity of 0.7 NTU, and RID regularly passes coliform tests.

4.1.6 Storage

The recycled water is stored in 55,000-gallon storage pond located 0.6 miles southwest from the WWTP along the south side of the golf course (Figure 6). Water is pumped to the storage pond using a 0.5-HP centrifugal pump through a 4-inch recycled water transmission line. The recycled water stored in this pond supplies a spray irrigation system for the community golf course.

4.1.7 Operational Management

Operations of RID's services are overseen by the RID Board of Directors (Board). The Board consists of five members elected to four-year terms by the residents of Shelter Cove. Monthly board meetings are held every third Thursday at 9:00 AM in the Fire Station in Shelter Cove. The current general manager is Philip Young.

Table 5. Board of Directors (2015)

Board Members	Title	Term Expiration
Susan Fox	President	Nov. 2015
Michael Caldwell	Vice President	Nov. 2018
Nanette Corley	Director	Nov. 2015
David Sommer	Director	Nov. 2015
Jack Hargrave	Director	Nov. 2018

4.2 RID Rates and Charges

There are currently 464 connections to RID's wastewater system (2015). These users are primarily residential, with only about 23 commercial connections. RID's rate structure for wastewater service can be found in Table 6 below. Currently, RID does not have a different rate structure for residential versus commercial service.

Table 6. Waste Water Rate Structure

Service Type	Monthly Rate	Unit
Residential		
Single-Family	\$32.50	Fixed
Multi-Family	\$32.50	Fixed
+ RUE	\$14.50	Each
Commercial		
Commercial - A (Hotels, Motels, RV Parks)	\$32.50	Fixed
+ RUE	\$14.50	Each
Commercial – B (Restaurants, Offices, etc.)	\$32.50	Fixed
+ RUE	\$14.50	Each

Table 7. Capacity Charges

Service Type	Monthly Rate		
Residential			
Capacity Fee	\$ 9,000		
Installation Fee	\$ 2,050		
Total	\$11,050		
Commercial			
4-inch lateral (per RUE	\$9,000		
Installation Fee	\$2,050		
Total	Based on RUEs		

See Appendix B for RID's 2013 financial audit.

5.0 NEED FOR PROJECT

5.1 Water Conservation

In response to droughts and various state mandates related to water conservation, RID hopes to reduce water diversions from Telegraph Creek through expanding the existing recycled water program and making this recycled water available for public and fire department use. The majority of the water in the RID water distribution system comes from Telegraph Creek, although RID also operates and maintains 13 groundwater wells and one spring. RID's water sources are limited in capacity and are highly vulnerable to drought and seasonal flow restrictions. Available capacity for water withdrawal is constrained by RID's current permitted water rights, which mandate a minimum flow of 0.775 cubic feet per second be maintained in Telegraph Creek.

RID has been unable to account for large volumes (approximately 30 percent) of water in the distribution system. RID staff suspect that water theft from RID's water system is a significant cause of the unaccounted-for water. See Appendix C for the article "146,000-Gallon Water Theft in Shelter Cove".

The replacement and expansion of RID's water recycling program would include allowing the use of the recycled water to the community by allowing RID to install a public recycled water filling station which they hope will reduce water theft from both the distribution system and from creeks and streams.

RID will offer the water free of charge to community members that live in their service area. A large agricultural industry is provided water by RID, and the intent is to reduce potable water demands in the system which in turn will make more water available for the community during droughts, as well as the wildlife which is also dependent on water from Telegraph Creek.

5.2 Fire Protection

RID provides fire protection services to RID residents and visitors through the Shelter Cove Volunteer Fire Department (SCVFD). The SCVFD has an emergency service response area of approximately 7.1 square miles. RID's water utility personnel respond to SCVFD emergencies, which require the use of RID hydrants and/or water storage tanks in order to coordinate the movement of water supplies within the system during a fire event.

The SCVFD historically responds to approximately 30 wildfires located within two miles of their service area each year. Making adequate amounts of recycled water available for fire suppression will provide a redundant fire protection supply separate from the community's potable water system. This water source could be used in place of potable water, thereby reusing water and conserving the potable water resources.

5.3 Growth Rate

Shelter Cove is a tourist destination. At the peak of tourist season (summer months), RID serves a combined residential and tourist population of approximately 1,500 people. The 2009 LAFCO Municipal Services Review estimates the District growth rate to be at 4.3 percent annually, which is high compared to the County's estimated growth rate of 0.6 percent (Humboldt County Draft General Plan April 2012). A review of the District's water demands suggests the growth rate closer to 1 percent.

6.0 PROPOSED FACILITIES

6.1 General Project Information

RID proposes to replace and expand its existing tertiary treatment system, which currently requires considerable maintenance to maintain, with a higher capacity system to expand the distribution of recycled water in the Shelter Cove Area. The intent is to protect the Telegraph Creek watershed by reducing demands on the creek, providing additional water for fire protection, and reducing water theft in the distribution system.

6.2 Rules and Regulations

RID operates and utilizes water from the current recycled water system in accordance with the applicable sections of Title 22. RID's current facility meets tertiary treatment standards and, upon expansion of the recycled water program, RID should be capable of providing the same quality of recycled water.

Members of the community that want to use recycled water will be required to sign the RID standard recycled water user agreement (See Appendix D - Sample Recycling Water Use Agreement) prior to being allowed access to the recycled filling station. The sample agreement will state that the recycled water user shall not use the recycled water in violation of the standards. The user will be required to read and agree to the standards described in Title 22 of the CCR.

The following entities will be involved in the design, treatment, distribution, construction, operation, and maintenance of the new recycled water facility. Note that, as RID is currently operating a recycled water facility, many of the stakeholders and entities listed below are already engaged in the operation and maintenance of the facility.

- A Licensed Engineer will provide the design of the expanded treatment system and manage construction.
- The construction of the facility will be performed by a qualified licensed contractor.
- Upon completion of the project construction phase, RID will operate and maintain the treatment, distribution, operation, maintenance, and regulatory compliance of the recycled water facility as defined by the new permit.
- The regulating authority with jurisdiction over recycled water facilities is the RWQCB with its Title 22
 Code of Regulations. The project will be designed and operated to meet the applicable sections
 of the CCR Title 22 regulations.

RID recycled water users shall comply with applicable state and local requirements regarding the production and use of recycled water, including the following:

- Water Code Sections 13500 13577
- Drinking Water Division of The Water Board regulations Title 22, Section 60301 30657
- Attachment E of the National Pollutant Discharge Elimination System (NPDES)

6.3 Operator Classification

RID's wastewater treatment plant currently operates with treatment processes requiring class III operator classification. The plant processes include primary treatment, an oxidation ditch system (activated sludge)

and tertiary treatment. Current average plant treatment and design flows for class III certification are presented in Table 8.

Table 8. Average Treatment Processes Flows and Class III Classification Design Flows

WWTP Process	Current Average flows (MGD) ¹	Flows After Implementing the Project (MGD) ¹	Class III Classification Design Flows (MGP) ¹
Primary	0.13 – 0.30	0.13 - 0.30	Less than 20.0
Activated Sludge	0.13 – 0.30	0.13 – 0.30	Less than 5.0
Tertiary	0.04	0.10	Less than 1.0

¹MGD – Million Gallons per Day

The proposed upgrade to the tertiary recycled water treatment will produce approximately 100,000 GPD of treated effluent. Class III certification allows for tertiary treatment capacity of up to 1.0 MGD; therefore, no operator classification change is required.

6.4 System Maintenance

RID is currently, and will remain, responsible for the production and distribution of recycled water. RID operates and maintains the distribution system on RID-owned property. RID personnel operate and maintain all components of the existing recycled water system, including the golf course irrigation system and storage pond.

The expanded recycled water system will also be managed and operated under the purview of RID, making a larger volume of water available for fire protection as well as for public use. All parties using recycled water will need to use it in accordance with the rules and regulations described in Section 5.2 above.

6.5 Untreated Wastewater Quality

The source of the wastewater used in the recycling process is mostly from residences and is consequently relatively easy to treat. RID has no industrial wastewater connections. From 2011 to 2015, the average dry weather flow (ADWF) was 0.127 MGD. ADWF is defined as the lowest 30-day average influent flow rate received by the treatment plant. Table 9 shows the ADWF, peak day flows, and residential unit equivalents (RUE) over the last five (5) years.

Table 9. Influent Data (2011 to 2015)

Year	ADWF (MGD)	Peak Day Flow (MGD)	RUEs (GPD)
2011	2011 0.119 0.465		227
2012	2012 0.108 0.818 2013 0.132 0.148 2014 0.143 0.541 2015 0.133 0.335		272
2013			184
2014			286
2015			224

MGD – Million gallons per Day

ADWF – Average Dry Weather Flow, ADWF occurs between April and September of each year

GPD – Gallons per Day

RUE - Residential Unit Equivalent -- Single-family dwelling unit, assumes approximately 2.5 people per dwelling unit

^{2015 -} Partial Flow Data: April through August

The current NPDES permit requires RID to collect and analyze influent wastewater samples monthly for Biochemical Oxygen Demand (BOD₅) and Total Suspended Solids (TSS). The ranges, median value, and 95th percentile values from 2011 through 2015 are listed in Table 10 below.

Table 10. Influent Characteristics (2011 to 2015)

Year	Constituent	Median Value (mg/L)	95 th Percentile Value (mg/L)	Range (mg/L)
2011	BOD₅	149	189	119
2011	TSS	174	221	162
2010	BOD₅	139	184	149
2012	TSS	167	211	172
0010	BOD ₅	140	200	176
2013	TSS	153	237	161
2014	BOD₅	137	168	127
2014	TSS	158	194	168
2015	BOD ₅	156	210	134
2015	TSS	163	270	207

2015 - Characteristics were calculated using partial year data from January -August

BOD5 - Biological Oxygen Demand, the amount of oxygen consumed by microorganisms in 5 days

TSS - Total Suspended Solids

mg/L = Milligrams per Liter

6.6 Proposed Expanded Tertiary Treatment

RID is planning to expand their recycled water program in order to make recycled water available to the public for additional fire protections and to use any remaining water to irrigate the golf course. The goal is to install a filtration system with a minimum capacity of 70 GPM and install five 20,000-gallon underground water storage tanks² to store the treated water. The new filtration system will replace the older system and be installed inside of the existing filter building (see Figure 5). The storage tanks will be installed underground at the northeast end of the airport runway, south of the wastewater treatment plant (Figure 6).

The filtration system will operate in varying flow conditions, treating all or most of the treated effluent during the summer months. During wet conditions, only a portion of the secondary treated effluent will go through the tertiary recycling process with amounts varying depending on the community's recycled water needs. The expansion will be capable of producing up to 100,000 gallons of recycled water per day.

RID's wastewater treatment plant treats the water to an average effluent turbidity of 0.9 to 1.8 Nephelometric Turbidity Units (NTU), and an average effluent Biochemical Oxygen Demand (BOD) from 2.0 mg/L to 3.7 mg/L. Tables 11 & 12 on the following page summarize the chemical characteristics of the effluent.

² 20,000 gallon tanks are believed to be the largest size tanks capable of travelling on Shelter Cover Road.

Table 11. Annual Effluent Turbidity Readings from the Waste Water Treatment Plant

Year	High (NTU)	Low (NTU)	Avg. (NTU)
2013	1.5	0.9	1.1
2014	1.8	1	1.3
2015	1.5	1	1.2

Table 12. Annual Effluent BOD5 and TSS Readings from the Waste Water Treatment Plant

Year	Constituent	Median Value (mg/L)	95 th Percentile Value (mg/L)	Range (mg/L)
2011	BOD ₅	2.8	3.6	2.7
2011	TSS	2.1	4.1	3.1
2012	BOD ₅	2	2.8	1.6
2012	TSS	1.8	2.3	1.3
2012	BOD ₅	2.5	3.1	1.6
2013	TSS	1.9	2.5	1.4
2014	BOD ₅	3.1	4	2
2014	TSS	2.4	3.7	2.3
2015	BOD ₅	3.7	3.9	1.1
2015	TSS	2.2	3	1.9

6.7 Operations and Maintenance Manuals

Following the installation of a new recycled water treatment system, a system-specific Operations and Maintenance (O&M) Manual will be developed. O&M manuals generally will include treatment process details, equipment maintenance and operation, data control, and various O&M procedures. The O&M Manuals will be kept on-site at the recycled water treatment facility and will be made available to all staff.

6.8 Plant Reliability Features

The entire wastewater treatment plant is monitored by a supervisory control and data acquisition (SCADA) system. The Operations Center is manned or actively monitored eight (8) hours per day, Monday through Friday, and four (4) hours per day on weekends, by a certified wastewater operator. Each analog control point has high and low set point alarms. In the event that analog data are outside the given range, an alarm will sound, alerting the operator to a potential process problem, and, if operators are off site, an auto dialer calls the operators to notify them of a potential problem. Standby operators and mechanics are available and can be reached by RID supplied cell phones 24 hours per day, seven (7) days per week. All alarm systems are tested on a quarterly basis. The expanded recycled water treatment facility will be monitored, manned, and alarmed similar to the rest of the wastewater treatment plant components. The treatment facility has an emergency generator on-site to supply enough power for the plant to operate in case of power failure.

6.9 Supplemental Water Supply

Not applicable.

6.10 Planned Monitoring and Reporting Program

All monitoring and reporting is to be completed according to the Monitoring and Reporting Program described in Attachment E of RID's NPDES permit (Appendix E)

In addition to the wastewater treatment plant reliability features described in Section 5.6 above, the new tertiary recycled water system will be equipped with alarm devices for the various unit processes as specified by the Title 22 Code of Regulations. The following alarms are proposed:

- Loss of power
- Supply pump failure
- Chlorine dosing pump failure
- Tertiary Filter process failure

Alarms will be installed to be independent of the wastewater treatment plant power supply by connecting them to an independent standby power source. The alarms will provide a warning to the facility operator during operational hours and will be routed to notify designated persons in charge during times when the facility is unattended.

6.11 Contingency Plan

A Contingency and Spill Prevention Plan for the wastewater treatment plant was prepared and adopted in 2010 and continues to undergo periodic updates as necessary. As required by the NPDES permit, an evaluation of the Contingency and Spill Prevention Plan is completed each year.

Wastewater treatment plants are subject to interruptions in normal operating procedures created by short-period power outages, equipment breakdowns, vandalism, temporary hydraulic or organic overload, discharge of toxic or flammable materials to the sewer system, extreme weather conditions, and natural disasters. RID developed an Emergency Response Plan for the wastewater treatment plant and trains its operators to minimize the effects of emergency situations that may result in a spill of inadequately-treated wastewater. The Emergency Response Plan addresses the following topics:

- Planning coordination coordination of plant operation with other municipal departments such as water, public works, fire, and police during emergencies;
- Personnel training and emergency assignments train operators to identify and take immediate action during emergencies for first priority issues (e.g., caring for injured persons);
- Communications prepare redundant communication media (e.g., telephone, radio) to ensure communication reliability in the event that one or more forms of communication are affected during an emergency;
- Protection of personnel and medical services instructions for all personnel regarding personal safety during an emergency and how to handle personal injuries including first aid training; and
- Emergency repair parts and supplies storage of 30 days of supplies for treatment chemicals and minor electrical or piping repairs.

The Contingency and Spill Prevention Plan will be updated to include the expanded tertiary treatment system.

6.12 Standby Power

The purpose of the standby power system is to provide power to the facility's electrical systems when utility power is not available. The minimal load required to operate the entire waste water treatment plant is 38 kilowatts (kW), with a peak load of 47 kW. The existing standby power system is designed to automatically start in case of a power failure. The standby power distribution system is powered by a 150 kW diesel-driven generator operating at 208 volts. Given that the peak load of the WWTP is currently 47 kW, there is sufficient electrical generating capacity left to handle the standby power needs of the expanded recycled water facility.

The diesel fuel is stored in a 500-gallon tank located outside the waste water treatment plant control building. The generator consumes 2.81 gallons of fuel per hour, giving the waste water treatment plant the ability to operate for an entire week on stand-by generator without refueling the tank. Additionally, the generator has an internal 100-gallon fuel tank.

The transfer between utility and standby power is controlled by auto-switching circuit breakers. The circuit breaker system does not allow for both the utility and standby generator power to be operating at the same time. The standby generator is adequately sized to operate all treatment processes, including the anticipated power needs of the expanded recycled water facility.

7.0 RECYCLED WATER DISTRIBUTION SYSTEM

The distribution system for the existing recycled water program is currently limited to the golf course irrigation system that includes the transmission main, storage pond, and irrigation sprinkler heads. The system is completely separate and away from any potable water source, potable water transmission lines, and sewer lines. There are no cross connections between the recycled and potable water pipes. The plans illustrating the existing recycled water distribution system layout, including location of the storage pond and sprinkler head locations, are enclosed in Figure 6.

The District currently has a cross-connection program in use.

A new transmission main between the treatment building and recycled water storage tanks will be needed. In order to serve the new recycled water fire hydrant, a small section of new transmission main between the hydrant and the new water storage tanks will be included.

8.0 USE AREAS

There are three main uses planned for the recycled water program; irrigating public lands (golf course), private irrigation, and fire protection. The following sections describe current and proposed reuse programs, as well as a storage impoundment description, inspection and monitoring plans, and training.

8.1 Irrigation

Spray irrigation of the golf course greens with recycled water occurs between mid-May and the end of September each year between the hours of 12:00 am and 6:30 am. The Shelter Cove Golf course is located

just south of the WWTP, along both sides the Shelter Cove regional airport air strip. The current layout is shown in Figure 6. RID personnel operate and maintain the irrigation system that currently uses an average of 720,000 gallons of recycled water per month when in use.

The proposed expansion of the tertiary filtration system, and additional storage, will allow RID to irrigate the fairways as well as the putting greens. Any excess water that is not consumed by the public or the fire department will be used on the golf course.

8.2 Equipment Marking

Section 116815(a), Title 22 of the CCR states "All pipes installed above or below the ground, on and after June 1, 1993 that are designed to carry recycled water, shall be colored purple or distinctively wrapped with purple tape." The pipe system that transmits recycled water from the WWTP to the pond and then to the irrigation system was not installed using purple pipes; however, anytime repairs or additions are made, all pipes, above or below the ground, are marked with purple tape to indicate recycled water. In addition, if buried recycled water pipelines are exposed in the future, all exposed pipelines will be marked with purple tape. All new pipelines will be installed in compliance with Section 116815(a). Any newly installed pipe that uses recycled water will be purple pipe.

8.3 Signage

In recycled water use areas, public warning signs measuring at least 4 inches by 8 inches with the following wording are to be installed: "DO NOT DRINK, GOLF COURSE IRRIGATED WITH RECYCLED WATER". The signs are to prominently display the international symbol for "Do Not Drink". Signs are to be placed in highly visible sections at each recycled water use area accessible to the public. At a minimum, signs are to be posted every 500 feet, and/or at each corner of every access road. A copy of the sign to be used is shown in Appendix F. Additionally, RID has prepared informational signs with wording "RECYCLED WATER" that are posted on both sides of a water tanker trucks used for fire protection. A picture of the sign is shown in Appendix G.

With the planned expansion of the recycling program, additional signs with minimum wording "RECYCLED WATER – DO NOT DRINK. AVISO! NO TOMAR. AGUA RECICLADA." along with the international symbol for "Do not drink" will be placed in all recycled water use areas accessible by public. Additional signs will also be placed throughout the golf course as the irrigation system expands.

8.4 Protection Methods

A separation distance between potable water lines and recycled water lines of at least four (4) feet horizontally and one (1) foot vertically will be maintained.

Irrigation of the golf course is conducted during the night and early morning hours to minimize public contact with the water. The irrigation schedule includes irrigating between 12:00 am and 6:30 am to ensure that irrigation water has properly soaked into the ground before the public accesses the golf course. Drinking water fountains are not located in or near the irrigated areas.

The recycled water will be dosed with sodium hypochlorite to maintain a chlorine residual in the water and to slow the growth of microorganisms in the system. When the golf course is not irrigated, District staff will likely reduce water levels in the tanks to monitor chlorine concentrations of the remaining water in the

tank(s) and add chlorine when needed in order to maintain chlorine residual and prevent bacterial regrowth.

Runoff will be prevented by the golf course maintenance personnel by following irrigation practices that are consistent with runoff, ponding, and environmental restrictions. Additionally, the following requirements specified by the NPDES Permit are adhered to:

- General Monitoring Provisions
- Monitoring Locations
- Influent Monitoring Requirements
- Effluent Monitoring Requirements
- Whole Effluent Toxicity Testing Requirements
- Reclamation Monitoring Requirements
- Receiving Water Monitoring Requirements
- Reporting Requirements

8.5 Impoundments

A water storage impoundment in the form of a pond located on the golf course property 0.6 miles south of the WWTP stores the recycled water (Figure 7). The pond is surrounded by a seven (7) foot tall fence to keep out unauthorized personnel. The storage pond can hold approximately 55,000 gallons of recycled water which is used to irrigate the Shelter Cove community golf course.

Expanding RID's recycled water system to 100,000 GPD will require an increase in storage capacity. Therefore, five 20,000 gallon underground storage tanks will be installed to accommodate the additional water. The tanks will be located approximately 600 feet south/west of the WWTP and hidden from view. The property where the tanks will be placed is adjacent to the golf course property and the Shelter Cove airport air strip and is owned and operated by RID. The new water tanks will supply the hydrant available to RID's fire department for fire protection and the public faucet. Additionally, the tanks will connect to the existing pipes that connect to the pond so that it can be refilled.

Shelter Cove Road has many sharp turns, and it is unlikely trucks will be capable of transporting storage tanks larger than 20,000 gallons down Shelter Cover Road to the site.

8.6 Cooling

Not applicable.

8.7 Groundwater Recharge

Not applicable.

8.8 Dual-Plumbed Use Areas

Not applicable.

8.9 Other Industrial Areas

Not applicable.

8.10 Other Uses

RID is developing a recycled water trucking program where tertiary-treated recycled water will be picked up by trucks authorized by RID. The program's users will include fire protection personnel and private users who live within RID boundaries and are current RID customers. The intent of the Trucking Program is to reduce the use of potable water for irrigation and to mitigate potable water theft. The Trucking Program will allow recycled water users to truck and use recycled water for irrigation and fire suppression. Users wanting water for irrigation will be required to sign the RID standard recycled water user agreement in addition to the Trucking Program's permit application. A sample Trucking Program Guideline and Permit Application, as well as a sample User Agreement, are included in Appendices H and D, respectively.

8.11 Use Area Design

The irrigation system at the Shelter Cove Golf Course was designed to use only recycled water and is not connected to the potable water system. Water use is adjusted often to prevent overwatering, which maintains a healthy turf. This careful attention to application is instrumental in preventing runoff.

8.12 Use Area Inspections and Monitoring

RID personnel monitor the golf course irrigation site daily and RID management conducts a site inspection at least once per year. The properties are checked for runoff, ponding, over spray, potential cross-connections, and other conditions prohibited by CCR Title 22. The RID inspections are conducted by certified wastewater operators.

8.13 Employee Training

Every year, RID conducts a one-day class for all operations and maintenance personnel who are responsible for recycled water irrigation site inspections and monitoring. The rules and regulations regarding proper use of recycled water, cross-connection control, vector control, and recycled water user permitting issues are taught at the class, and a handbook of all relevant requirements is provided as well. The handbook includes a copy of the current Master Recycling Permit, CCR Title 17 and 22, recommended/required BMPs, and an updated emergency contact list for RID and recycled water user staff. All RID irrigation specialists are required to attend each year, and operations and maintenance personnel may repeat the training as often as necessary.

RID personnel (those responsible for turf irrigation) are required to attend the training class at least once during their employment term. They are also invited to attend the class each year for refresher training.

9.0 PROPOSED PROJECT

9.1 Constraints

A constraint is a hard boundary that must be met for the implementation of a project design. For a project to be feasible, it must comply with the given constraints. To ensure the success of the project, project-specific constraints have been set and are as follows:

- The system must be California Title 22 approved;
- The system must not present a risk to public safety;

- The system must comply with all government agency regulations and be able to gain all permits required by each interested agency;
- The project will not interfere with public access to the airport and the golf course.

9.2 Available Technologies

Several filtration technologies were reviewed, including sand filters, cloth media filters, and compressible media filters. The systems of three specific manufacturers were reviewed. This section gives a brief overview of each treatment system technology. Note that no recommendations are implied in this text; recommendations are to be made during the design after a thorough review; however, a brief overview of the filter systems is included to assist the reader in understanding some of the different technologies available.

Note that all the filter systems described below will require that the effluent be pumped to the filter. Additionally, some of the filter systems may require that the filtered water be pumped to the tanks.

9.3 Non-Granular Media Filter (Fuzzy Filter™)

Fuzzy FilterTM operates in an up-flow design and achieves a high rate of solid removal through the use of synthetic fiber spheres. The low density and high porosity of the media results in capture. Because the media is compressible, the total porosity of the filter bed can be altered to suit influent characteristics by mechanically compressing the media. The filter media also represents a departure from the conventional filter media in that the fluid to be filtered flows through the media, as opposed to flowing around the media, as in sand and anthracite filters. These features permit higher hydraulic loadings compared to conventional sand filters.

Fuzzy FilterTM appears to require the smallest footprint (compared to all other reviewed filter systems), at 1.5 x 1.5 feet per unit. The small footprint would allow easy installation of the system inside the existing building with plenty of room to spare for supporting equipment.

Based on studies conducted at the City of Roseville's Pleasant WWTP, the Fuzzy FilterTM has been approved by California Department of Public Health (now the Water Quality Division of the Water Board), Title 22 for a much higher filtration flow rate, up to 40-gpm/ft² as compared to sand filters, which are approved for filtration rates of up to 5-gpm/ft².

Fuzzy FilterTM utilizes three operational cycles: filtration cycle, wash cycle, and flush cycle. During the filtration cycle, influent enters the lower chamber of the unit and moves through the compressed media in the up-flow direction. The upper chamber collects the filtered fluid and discharges the effluent to designated storage containment. During the wash cycle, Fuzzy FilterTM utilizes air scouring to clean the media. The movable plate on top of the media is raised while influent continues to enter the filter. An external blower supplies air in the bottom of the chamber to agitate the media. The media, which is retained between the two perforated plates, is subjected to vigorous air scouring to free captured solids. Free solids continuously exit the filter during washing. After the wash cycle is complete, the media is returned to its compressed state and the upper chamber is flushed with newly filtered fluid. Once the flush cycle is complete, the unit returns to filtration cycle.

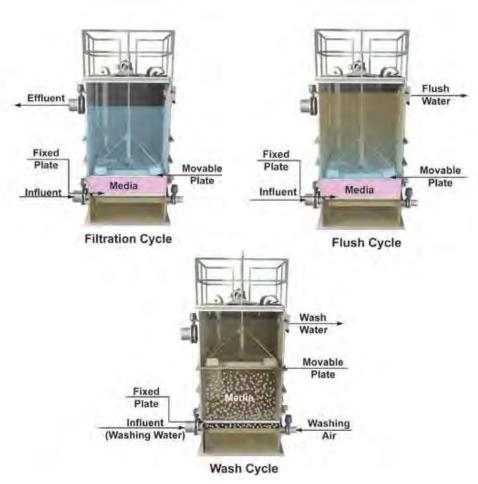


Figure A. Fuzzy FilterTM Operational Cycles

9.4 Cloth Media Filter

The FluidyneTM Fixed Plate Cloth Media Filter was selected as an example cloth media filters. The system was selected for review due to its small footprint and redundancy built into a single unit. Based on the estimated required filtration capacity of 70 GPM, the appropriate filter system would have a foot print of 4.7×3.2 feet.

The Fluidyne™ Fixed Plate Cloth Media Filter (filter) utilizes multiple isolated fixed media panels and pump-free backwash capability. Each media panel is located within its own chamber, allowing for filtration and backwash through individual chambers, independent of adjacent filter panels. This plurality of filter elements allows incoming fluid to continue to enter the filter system while individual filter elements are being backwashed or removed from the system. This allows the treated water to continuously replenish the recycled water reservoir, as the liquid flow is maintained while individual elements are gravity backwashed. Each element is backwashed in sequence, allowing complete system backwash without discontinuing or diverting flow during the process; flow to only one element has to be discontinued.

The filter for the proposed application would contain four media elements. Each filter has a filtration rate of 2.9 gpm/ft². With this configuration, this filter system would provide continuous capacity of about 100,000 GPD. Figure B shows a four-chamber FluidyneTM Cloth Media Filter.

Figure B. FluidyneTM Cloth Media Filter System with four media elements.

9.5 Sand Filters

The Centra-flowTM filter system was used to represent sand filtration systems. The Centra-flowTM is designed for gravity feed, classified as an up-flow dynamic bed filter, with backwash cycles and no valves or complex control systems. The only operating cost is the power consumption of the airlift. Each airlift, which continuously circulates spent media to the wash box, consumes between 1 to 3-cubic feet per minute (cfm) at 40-psi. The backwash cycles are designed to operate without interruptions to the continuous filtration. The filter utilizes gradual media, having a bed depth of 40 inches, in order to achieve Title 22 specified effluent criteria. The sand media is a silica sand, conforming to AWWA Standard B-100. The sand media is continuously washed in an integral wash box to remove excess suspended solids and route those particles to a reject stream. The filter operation is described using filter diagram shown on Figure C.

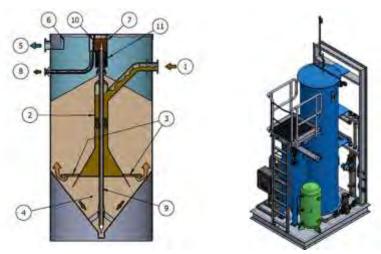


Figure C. Operational diagram of Centra-flow™ Filter System.

Influent process water (1) enters the filter through a central feed chamber. At the bottom of the feed chamber (2), a set of radial arms (3) evenly distributes the process water to the media bed. Water flows upward through the filter, and the media (4) retains suspended solids, contaminants, and nutrients depending on the application. The purified filtrate (5) fills the headspace above the media bed and flows over a fixed effluent weir (6) at the top of the filter. A portion of the filtrate passes through the wash box (7) at the top of the central assembly and carries away the separated solids, contaminants, and nutrients in the reject stream (8). As the airlift (9) transports the dirtiest sand to the wash box, the media bed moves downward at a steady rate. Solids and contaminants retained by the filter media are drawn downward into a recessed chamber in the filter's lower cone. The high-energy turbulence inside the airlift provides a scrubbing action that effectively separates the sand and the captured solids before discharging them to the wash box at the top of the filter. The wash box is a baffled chamber that allows for counter-current washing and gravity separation of the filter media and the lighter captured solids. The separated solids and contaminants are carried away by the reject portion of the filtrate, while the scrubbed media falls by gravity to the top of the filter bed.

9.6 Environmental Impacts

An environmental analysis pertaining to the expansion of the existing water recycling program has been prepared based on the requirements of the California Environmental Quality Act (CEQA). A number of environmental impacts were evaluated as part of this analysis, but with mitigation incorporated, none of these impacts were determined to be significant.

Impacts that require mitigation that must be included on engineering plans and specifications are included below. Other impacts identified in the CEQA analysis were determined to be insignificant before mitigation and are not included here, as the mitigation measures would not need to be included on engineering plans or specifications.

9.6.1 Air Quality

Humboldt County is in "non-attainment" for PM₁₀. Therefore, any use or activity that generates unnecessary airborne particulate matter may be of concern. While project construction would generate temporary

emissions, the project will not include any source of visible emissions, including intentional fire/burning or manufacturing. The project will not obstruct implementation of California standards or the North Coast Unified Air Quality Management District's (NCUAQMD) draft PM₁₀ Attainment Plan.

The NCUAQMD has advised that generally an activity that individually complies with the state and local standards for air quality emissions will not result in a cumulatively considerable net increase in the countywide PM_{10} air quality violation. With the incorporation of the mitigation measure listed below, which requires compliance with NCUAQMD standards and regulations, the project will not result in adverse air quality impacts or result in a cumulatively considerable net increase in the PM_{10} non-attainment levels in Humboldt County.

Mitigation:

Comply with Air Quality Regulations. At all times, the project shall be constructed in compliance with Air Quality Regulation 1– Air Quality Control Rules, Rule 104, Section 4.0 – Fugitive Dust Emissions. The project contractor will be required to do the following:

- Cover open-bodied trucks when used for transporting materials likely to give rise to airborne dust.
- Conduct trench digging, backfill, and paving of water pipe trenches in such a manner as to minimize the creation of airborne dust. Use water for control of dust during construction operations.
- Apply asphalt, water, or suitable chemicals on exposed earth surfaces, materials stockpiles, and other surfaces which can give rise to airborne dust.
- Pave the backfilled trenches as soon as practicable.
- Promptly remove earth or other track-out material from paved streets onto which earth or other material has been transported by trucking or earth moving equipment.
- Maintain construction equipment in good condition to minimize excessive exhaust emissions.

9.6.2 Biological Impacts

No impacts to wetlands or riparian areas have been identified as a result of the project. During a walking survey conducted by a biologist in November of 2015, a number of native California Oatgrass (Danthonia california) plants along the pipeline route were identified. California oatgrass is not listed as a sensitive species; however, its presence could be indicative of other native species in the area. Therefore, the following mitigation measure is incorporated into the project:

Mitigation:

Conduct seasonally Appropriate Rare Plant Surveys. Due to the presence of California oatgrass (*Danthonia California*) seasonally appropriate (May-August) flowering plant surveys shall be conducted prior to ground breaking. If native species are located within the area of disturbance and impacted by project activities, they shall be reseeded in kind at a minimum of 2:1 ratio following the completion of excavation activities.

9.6.3 Hazards

Operation of the proposed project would slightly increase the routine transport, use, and storage of chlorine and sulfur dioxide in amounts necessary to increase the amount of recycled water generated by the WWTP from 38,000 to 100,000 gallons per day. However, this amount is expected to be minimal. Sulfur dioxide will be used to remove residual chlorine from wastewater going to the ocean, but not recycled water intended for irrigation uses. Additional chlorine may be added to the recycled water intended for the storage tanks to prevent bacterial growth. Construction of the proposed project will require the transport, use, storage, and disposal of hazardous materials common to the construction process such as

gasoline, diesel fuel, hydraulic fluids, paint, oils and lubricants. The types and quantities of materials to be used could pose a significant risk to the public and/or environment if not managed in accordance with Construction Best Management Practices. With the implementation of the Mitigation Measures listed below there will be a less than significant impact from the project related to hazards.

<u>Mitigation:</u> Store, Handle, and Use Hazardous Materials in Accordance with Applicable Laws. RID will ensure that all construction-related and operational hazardous materials and hazardous wastes are stored, handled, and used in a manner consistent with relevant and applicable federal, state, and local laws. In addition, construction-related and operational hazardous materials and hazardous wastes will be staged and stored away from residences, stream channels, surface waters, and sensitive resources to prevent contamination in the event of an accidental release.

Properly Dispose of Contaminated Soil and/or Groundwater. If contaminated soil and/or groundwater is encountered or suspected during project construction, work will be halted until the type and extent of contamination is identified. A contingency plan to dispose of any contaminated soil or groundwater will be developed through consultation with appropriate regulatory agencies.

Properly Dispose of Hydrostatic Test Water. Dewatering of the pipeline during hydrostatic testing (testing for pressure and leaks) during construction, operations, and maintenance activities shall be discharged to land or the sanitary sewer system and not into any creeks, drainages, or waterways and will be conducted in accordance with general waste discharge requirements established by the North Coast Regional Water Quality Control Board per Order No. R1-2009-0045 General NPDES Permit No. CA0024902 Waste Discharge Requirements for Low Threat Discharges to Surface Waters in the North Coast Region. (California Regional Water Quality Control Board, 2009)

Prepare a Health and Safety Plan, and Hazardous Materials Management/Spill Prevention Plan. RID shall require the contractor to prepare a Health and Safety Plan that includes a project-specific contingency plan for hazardous materials and waste operations prior to the initiation of construction activities. The Health and Safety Plan will be prepared according to federal and state OSHA regulations, will be applicable to all construction activities, and will establish policies and procedures to protect workers and the public from potential hazards. The plan will include the following:

- A discussion of hazardous materials management, including delineation of hazardous material storage areas, access and egress routes, waterways, emergency assembly areas, temporary hazardous waste storage areas
- Notification and documentation procedures
- Spill control and countermeasures, including employee spill prevention/response training

9.7 Geologic Impacts

No geologic impacts have been identified as part of the project.

9.8 Construction

The five, 20,000-gallon storage tanks connected in series will require earth excavation at the designated placement site. Roughly 400 feet of 6-inch purple PVC pipe will need to be installed to connect the filter outlet and the first tank inlet. The treatment building elevation is approximately ten feet higher than the

surface elevation of the storage tanks placement, which will require a small lift station to be installed near the filter building.

A fire hydrant and public faucet will be installed at the intersection of Lower Pacific Drive and the north entrance point of the golf course, with about 400 feet of 8-inch purple PVC pipe installed to connect them to the storage tanks. There will be approximately 18 feet of head (that will fluctuate from 6 feet of head to 18 feet available between the top of the storage tanks (higher ground) and the fire hydrant outlet. The tanks are anticipated to be 12 feet in diameter, thereby allowing gravity feed from the tanks to the fill station. A small security cage will need to be installed to prevent unauthorized use of the system. Installation of an electronic key system at the fire hydrant cage is recommended for easy activation and deactivation of users.

9.9 Cost Estimates

Costs associated with the project will include the supplier provided filtration equipment, five 20,000-gallon underground fiberglass storage tanks, and installation construction cost estimate. The Centra-flow filter also includes cost associated with the construction of a system weather protection structure. Table 13 summarizes the approximate costs associated with installation of each described technology.

Table 13. Estimated System Costs (for budgetary purposes)

Description	Cost
a. Construction costs	\$500,000
b. Equipment costs	\$420,000
c. Land Purchase	\$0_
d. Rehabilitation or renovation of facilities	\$25,000
e. Site preparation costs	\$25,000
f. Architectural/engineering, design and planning costs	\$80,000
g. Engineering and administrative costs during construction	\$40,000
h. Surveys	\$25,000
i. Legal fees	\$0
j. Financing costs	\$0
k. Commitment fees and deposits	\$0
I. Other construction costs (Rare Plant survey)	\$5,000
m. Other planning/design costs (Erosion control))	\$5,000
Sub Total	\$1,125,000
n. Contingency (10%)	\$112,500
Total Costs	\$1,237,500

9.10 Security

A controlled-access recycled water filling station will be installed at the northern end of the airport runway, south of the wastewater treatment plant (Figure 7). Water for public use will be accessible via a spigot or similar water tap. The current proposal is to have the recycled water filling station protected with a security fence and controlled-access keypad and/or smart key made available only to those community members

who have reviewed the related safety information and signed the standard recycled water user agreement with RID. The storage tanks will be buried into an existing berm next to the runway and therefore be inaccessible.

A fire hydrant will be installed at the filling station for access to the recycled water by fire professionals.

9.11 Permit Requirements

At this time, it is anticipated that the following permits will need to be obtained prior to and during the expansion of the recycled water program:

- Humboldt County Local Coastal Plan (LCP) Updated Public Works Plan, South Coast Area Plan
- Humboldt County Coastal Development Permit
- Humboldt County Grading Permit
- RWQCB Master Recycling Permit

The South Coast Area Plan of the Humboldt County Local Coastal Plan (LCP) allows for the development of utility facilities pursuant to an approved Public Works Plan. Humboldt County has approved a Public Works Plan for RID facilities in Shelter Cove. An amendment to the existing Public Works Plan will need to be carried out to include the expansion of the existing recycled water program.

Additionally, due to its location within the Coastal Zone, expansion of the water recycling treatment facility will require both a Coastal Development Permit and a Coastal Grading Permit through the Humboldt County Community Development Department prior to construction.

CCR Division 7, Chapter 7, Article 4, Section 13522.5 establishes a requirement for all persons proposing to recycle water, or to use recycled water, to file a report with the local Regional Board. Such reports would be required from all purchasers of recycled water under the proposed program unless RID first secures a master recycling permit from the RWQCB pursuant to Section 13523.1. Mandatory components of the Master Recycling Permit include the following:

- Compliance will uniform statewide recycling criteria
- Requirement to establish and enforce rules and regulations for recycled water users pursuant to statewide recycling requirements
- Quarterly reporting
- Requirement for period inspections of the facilities of recycled water users, although selfinspections may be sufficient for this application

9.12 Annual Operation and Maintenance Costs

Operations and Maintenance Costs(2)

	1-5 years	6 - 10 years	11 - 15 years	16-20 years
Maintenance ⁽¹⁾	\$1,000	\$5,000	\$40,000	\$50,000
Operations ⁽¹⁾	\$32,000	\$32,000	\$32,000	\$32,000
Total ⁽¹⁾	\$33,000	\$37,000	\$72,000	\$82,000

⁽¹⁾ All figures are net present worth

9.13 Project Sizing and Alternative Analysis

The treatment and system were sized to recycle and store all of the daily wastewater flows available during the summer months. Any surplus recycled water will be used to irrigate the golf course, and between public, fire department, and the golf course, RID expects to use all of the recycled water during the summer months. RID anticipates it will not discharge wastewater at its outfall during the summers. For the remaining months of the year, RID expects agricultural users will still require some water, and the recycled water storage tanks will be refilled as needed. Any excess wastewater will be allowed to flow out the permitted discharge point.

There are no other available water sources available to the RID in the Shelter Cove area other than installing a dam on Humboldt Creek or desalinating ocean water. Damming Humboldt Creek is currently being explored by the RID; however, given environmental concern, this may not be the best alternative, and, if completed, the water may only be available for fire protection. Desalinating ocean water was dismissed because of the costs, and the high energy requirements. The Shelter Cove area is not connected to the State electrical grid; all of its electricity is generated on-site. Additionally, there are possible environmental problems associated with returning highly saline waters to the ocean in an environmentally sensitive area.

10.0 REFERENCES

Department of Health Services, Division of Drinking Water and Environmental Management, Drinking Water Program, Recycled Water Unit, March 2001, Guidelines for the Preparation of an Engineering Report for the Production, Distribution and Sue of Recycled Water.

Humboldt Local Agency Formation Commission, Resort Improvement District #1 Municipal Service Review, March 2009.

Humboldt County General Plan Update, Draft Environmental Impact Report, SCH# 2007012089, April 2, 2012.

California Department of Public Health, Regulations related to Recycled Water, June 18, 2014.

State Water Resources Control Board, Division of Drinking Water, Alternative Treatment Technology Report for Recycled Water, September 2014.

⁽²⁾ Costs per year

FIGURES

Figure 1 Location Map

Figure 2 Water Sources and WWTP Discharge Point

Figure 3 Land Use Map

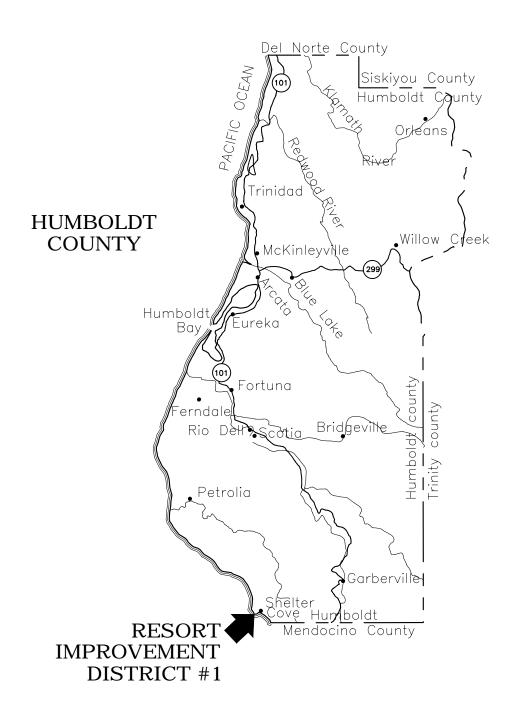
Figure 4 Service Boundary Map

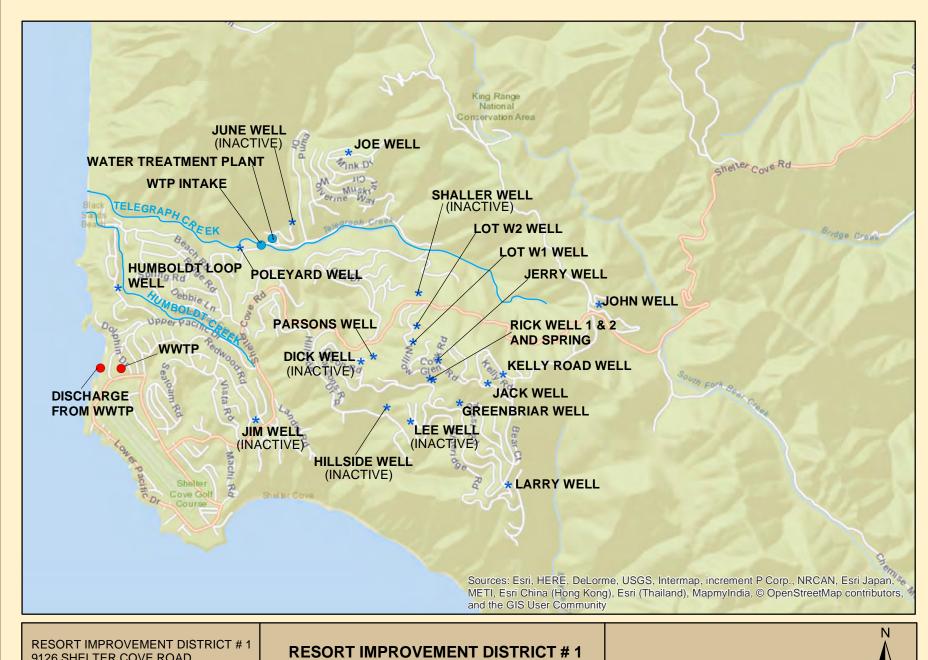
Figure 5 Facility Flow Diagram

Figure 6 Reclamation Area Flow Map

Figure 7 Reclamation Area

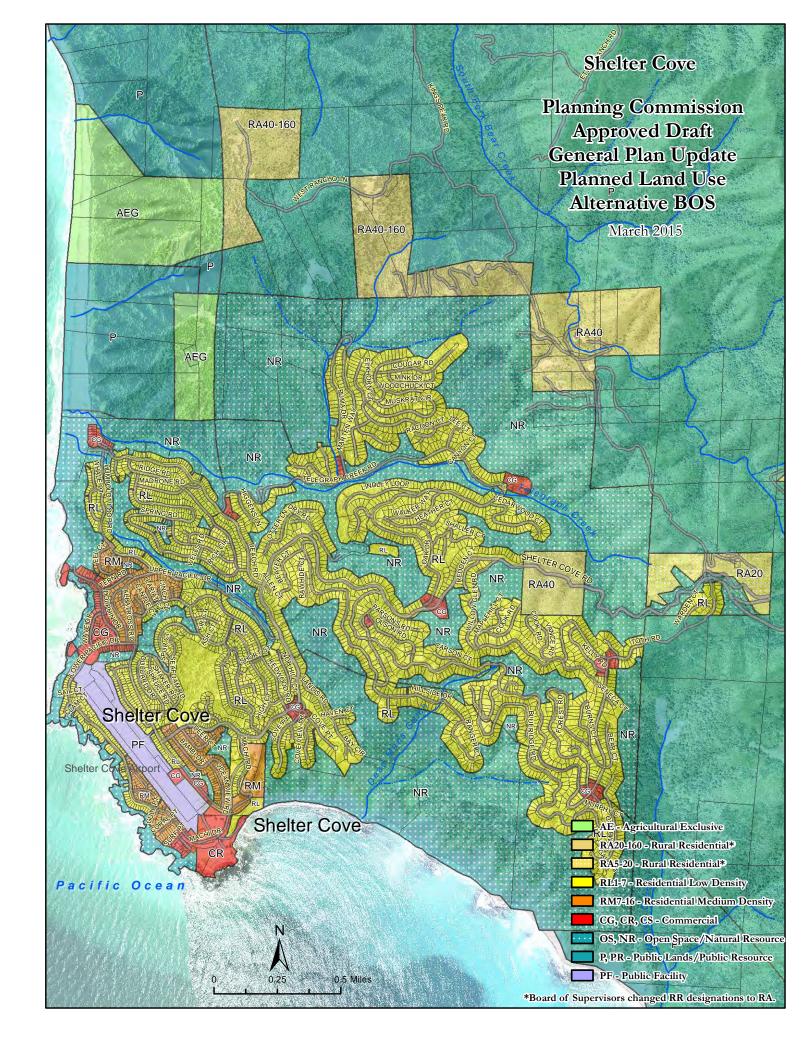
Figure 8 Topographic Map

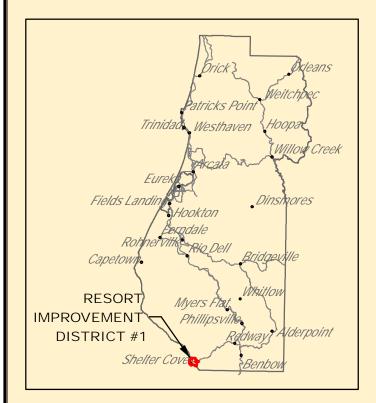

Figure 9 Groundwater Basins Map



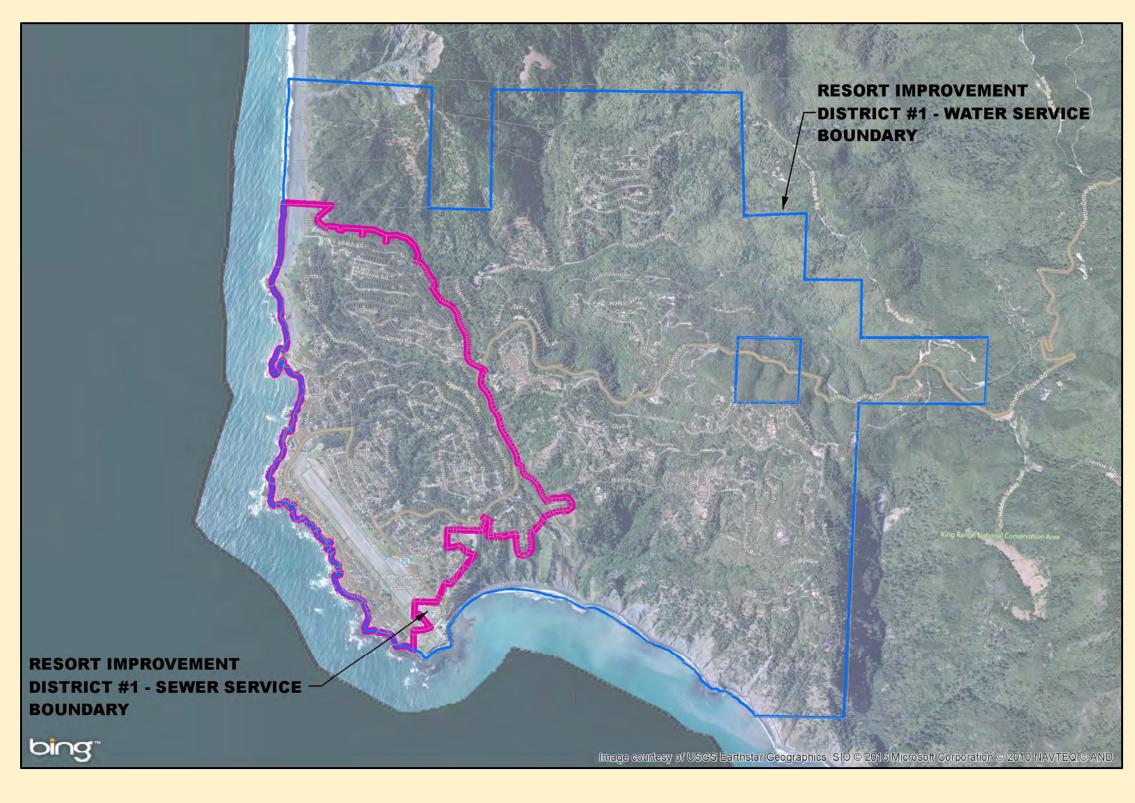
PROJECT	SHELTER COVE RECYCLED WATER	BY	SMS	FIGURE
CLIENT	RESORT IMPROVEMENT DISTRICT	DATE	10-15-15	1
LOCATION	SHELTER COVE, CA	CHECK	AN	JOB NO.
	LOCATION MAP			8022.08

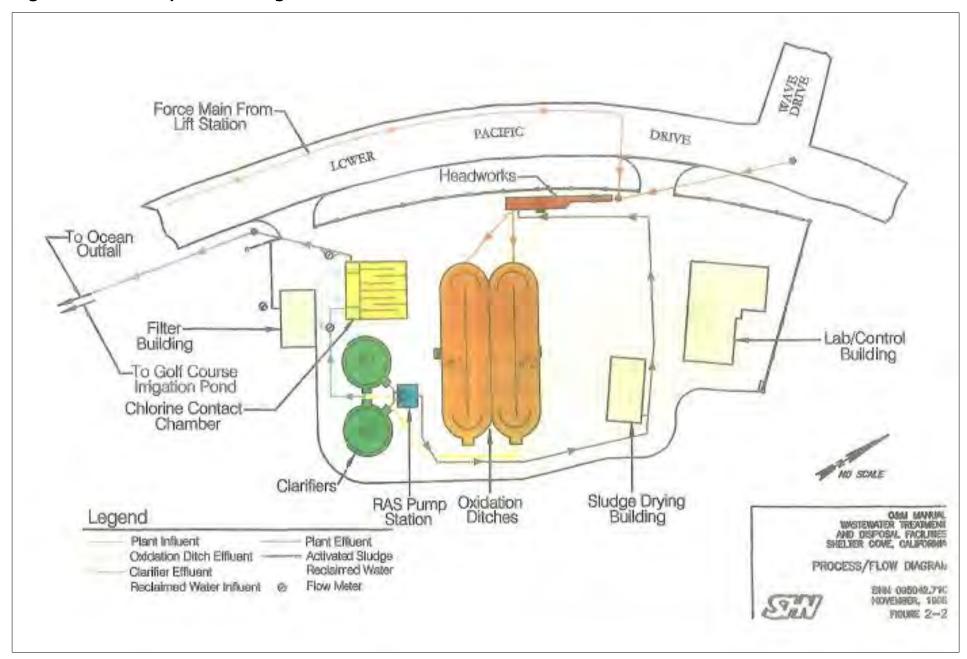
PROJECT SHELTER COVE RECYCLED WATER	BY SMS	FIGURE
RESORT IMPROVEMENT DISTRICT	DATE 10-15-15	1
LOCATION SHELTER COVE, CA	_{CHECK} AN	JOB NO.
LOCATION MAP		8022.08



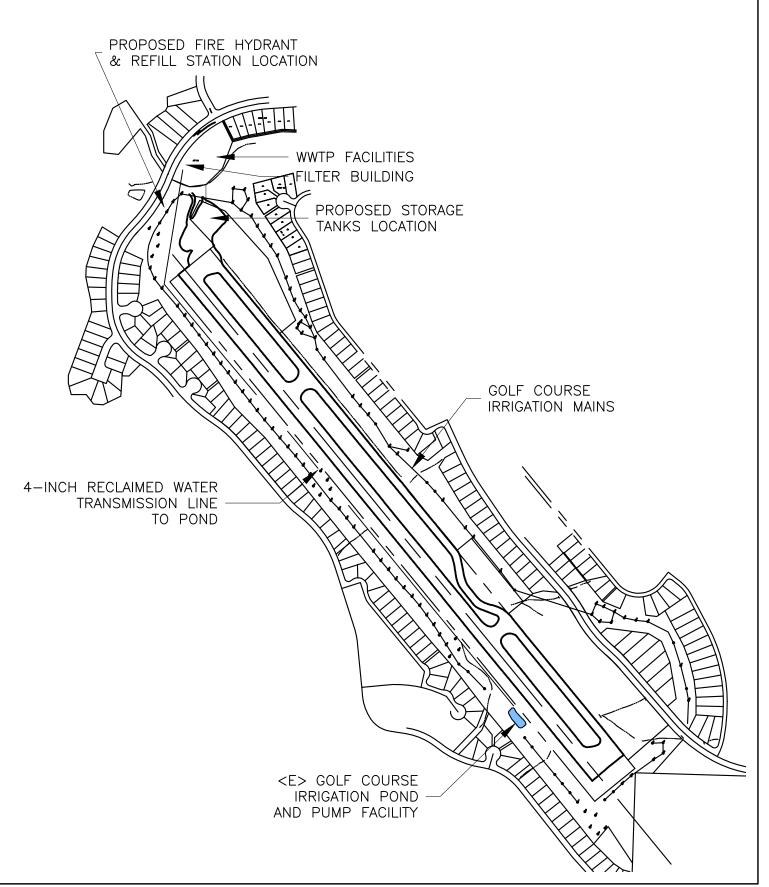


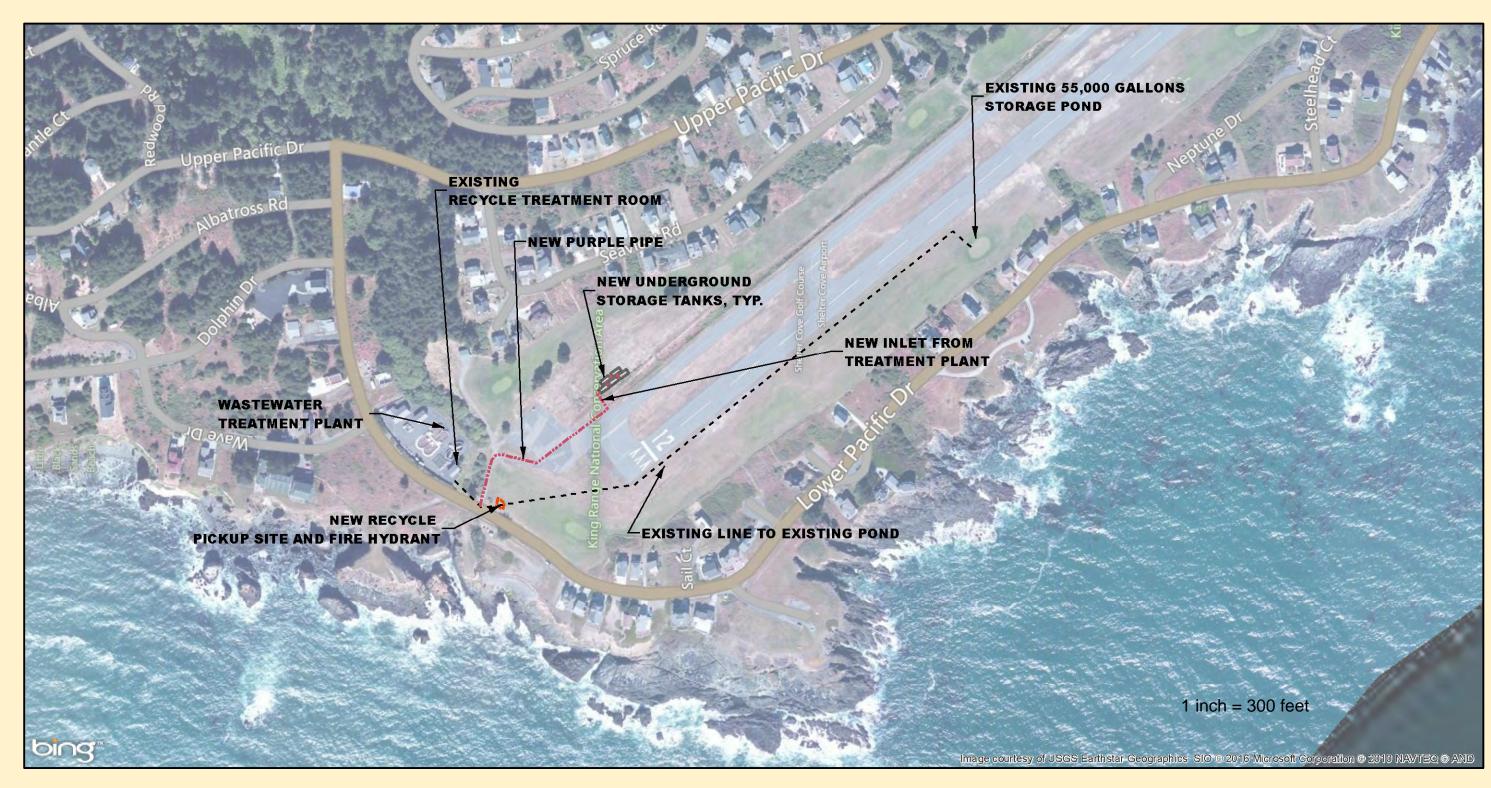
RESORT IMPROVEMENT DISTRICT # 1 9126 SHELTER COVE ROAD WHITEHORN, CA (707) 986-7447


RESORT IMPROVEMENT DISTRICT # 1
WATER SOURCES AND WWTP DISCHARGE
Figure 2

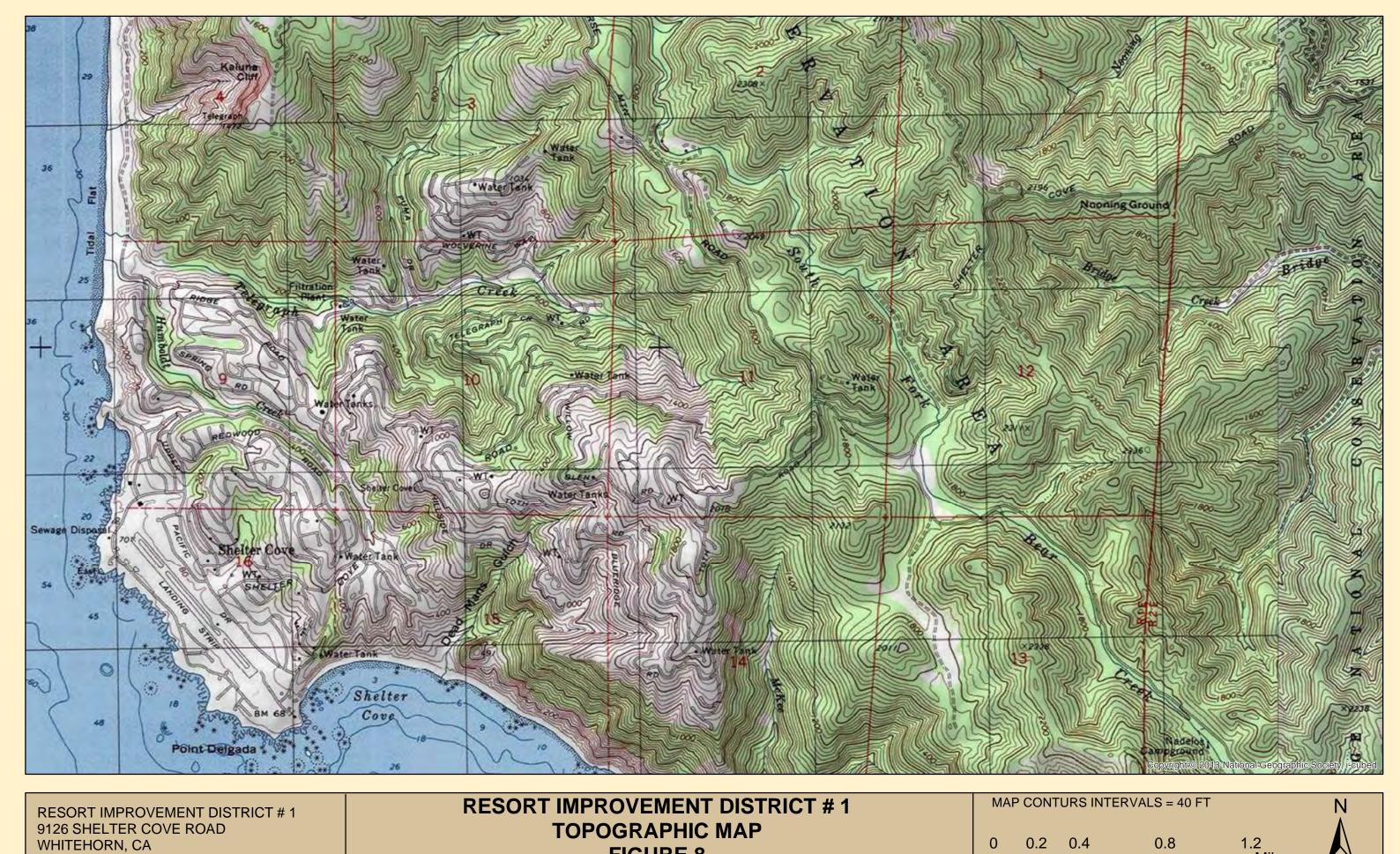

HUMBOLDT COUNTY, CALIFORNIA

RESORT IMPROVEMENT DISTRICT #1 9126 SHELTER COVE ROAD WHITEHORN, CA. (707) 986-7447 RESORT IMPROVEMENT DISTRICT #1
FIGURE 4
SERVICE BOUNDARY MAP

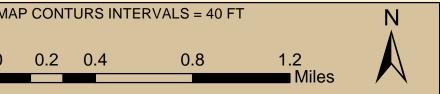

Coordinate System: NAD 1983 StatePlane California I FIPS 0401 Feet
Projection: Lambert Conformal Conic
Datum: North American 1983
False Easting: 6,561,666.6667
False Northing: 1,640,416.6667
Central Meridian: -122.0000
Standard Parallel 1: 40.0000
Standard Parallel 2: 41.6667
Latitude Of Origin: 39.3333
Units: Foot US


Figure 5 Facility Flow Diagram

PROJECT	SHELTER COVE RECYCLED WATER	BY	SMS	FIGURE
CLIENT	RESORT IMPROVEMENT DISTRICT	DATE	10-15-15	6
LOCATION	SHELTER COVE, CA	CHECK	AN	JOB NO.
	RECLAMATION AREA FLOW MAP			8022.08



RESORT IMPROVEMENT DISTRICT #1 9126 SHELTER COVE ROAD WHITEHORN, CA. (707) 986-7447


RESORT IMPROVEMENT DISTRICT # 1 RECLAMATION AREA FIGURE 7

Coordinate System: NAD 1983 StatePlane California I FIPS 0401 Feet
Projection: Lambert Conformal Conic
Datum: North American 1983
False Easting: 6,561,666.6667
False Northing: 1,640,416.6667
Central Meridian: -122.0000
Standard Parallel 1: 40.0000
Standard Parallel 2: 41.6667
Latitude Of Origin: 39.3333
Units: Foot US

(707) 986-7447

FIGURE 8

REUSE OF DOCUMENTS: This document and the ideas and design incorporated herein, as an instrument of professional service, is the property of LACO Associates and shall not be reused in whole or part for any other project without LACO Associates express written authorization

ROSA EUREK/ IMPROVEMENT DISTRICT NO. SHELTER COVE, CA PAG DRAFT 02/17/2016 8022.08

APPENDIX A

Water Quality Results

Drinking Water Division Monitoring Results for Individual Sampling Points Resort Improvement District # 1 Shelter Cove, California

Acronyms:

XMOD - modifier for finding ("<" means Not Detected)

MCL - Maximum Contaminant Level

DLR - Detection Limit Reporting

		Poleyard Well - Ra	w (1210	022-002)			
Sampling Date	Storet Number	Group/Constituent Identification	XMOD	Result	MCL	DLR	Trigger	Unit
8/3/2015	95	SPECIFIC CONDUCTANCE		170	1600	0	900	US
8/3/2015	A-031	PERCHLORATE	<	0	6	4	4	UG/L
5/5/2015	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
4/6/2015	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
10/28/2014	1032	CHROMIUM, HEXAVALENT	<	0	10	1	10	UG/L
4/8/2014	71850	NITRATE (AS NO3)		4.7	45	2	23	MG/L
4/8/2013	71850	NITRATE (AS NO3)		3	45	2	23	MG/L
8/6/2012	95	SPECIFIC CONDUCTANCE		170	1600	0	900	US
8/6/2012	A-031	PERCHLORATE	<	0	6	4	4	UG/L
7/5/2012	11501	RADIUM 228	<	0	0	1	0	
7/5/2012	11502	RADIUM 228 COUNTING ERROR		0.56	0	0	0	PCI/L
7/5/2012	A-075	RADIUM 228 MDA95		0.2	1	0	0	PCI/L
5/1/2012	81	COLOR	<	3	15	0	15	UNITS
5/1/2012	86	ODOR THRESHOLD @ 60 C	<	0	3	1	3	TON
5/1/2012	95	SPECIFIC CONDUCTANCE		170	1600	0	900	US
5/1/2012	403	PH, LABORATORY		6.5	0	0	0	
5/1/2012	410	ALKALINITY (TOTAL) AS CACO3		48	0	0	0	MG/L
5/1/2012	440	BICARBONATE ALKALINITY		48	0	0	0	MG/L
5/1/2012	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
5/1/2012	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
5/1/2012	900	HARDNESS (TOTAL) AS CACO3		53	0	0	0	MG/L
5/1/2012	916	CALCIUM		14	0	0	0	MG/L
5/1/2012	927	MAGNESIUM		4.1	0	0	0	MG/L

5/1/2012	929	SODIUM		8.9	0	0	0	MG/L
5/1/2012	937	POTASSIUM	<	2	0	0	0	MG/L
5/1/2012	940	CHLORIDE		11	500	0	250	MG/L
5/1/2012	945	SULFATE		14	500	0.5	250	MG/L
5/1/2012	951	FLUORIDE (F) (NATURAL- SOURCE)	<	0	2	0.1	2	MG/L
5/1/2012	1002	ARSENIC	<	0	10	2	5	UG/L
5/1/2012	1007	BARIUM	<	0	1000	100	1000	UG/L
5/1/2012	1012	BERYLLIUM	<	0	4	1	4	UG/L
5/1/2012	1027	CADMIUM	<	0	5	1	5	UG/L
5/1/2012	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
5/1/2012	1042	COPPER	<	0	1000	50	1000	UG/L
5/1/2012	1045	IRON	<	0	300	100	300	UG/L
5/1/2012	1051	LEAD	<	0	0	5	15	UG/L
5/1/2012	1055	MANGANESE	<	0	50	20	50	UG/L
5/1/2012	1059	THALLIUM	<	0	2	1	2	UG/L
5/1/2012	1067	NICKEL	<	0	100	10	100	UG/L
5/1/2012	1077	SILVER	<	0	100	10	100	UG/L
5/1/2012	1092	ZINC	<	0	5000	50	5000	UG/L
5/1/2012	1097	ANTIMONY	<	0	6	6	6	UG/L
5/1/2012	1105	ALUMINUM	<	0	1000	50	200	UG/L
5/1/2012	1147	SELENIUM	<	0	50	5	50	UG/L
5/1/2012	70300	TOTAL DISSOLVED SOLIDS		110	1000	0	500	MG/L
5/1/2012	71814	LANGELIER INDEX AT SOURCE TEMP.	-	2	0	0	0	
5/1/2012	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
5/1/2012	71850	NITRATE (AS NO3)		3.6	45	2	23	MG/L
5/1/2012	71900	MERCURY	<	0	2	1	2	UG/L
5/1/2012	82079	TURBIDITY, LABORATORY		1.1	5	0.1	5	NTU
5/1/2012	A-029	NITRATE + NITRITE (AS N)		810	10	0.4	5	mg/L
4/9/2012	11501	RADIUM 228	<	0	0	1	0	
4/9/2012	11502	RADIUM 228 COUNTING ERROR		0.56	0	0	0	PCI/L
4/9/2012	71850	NITRATE (AS NO3)		3.7	45	2	23	MG/L
4/9/2012	A-075	RADIUM 228 MDA95		0.2	1	0	0	PCI/L
1/9/2012	11501	RADIUM 228	<	0	0	1	0	
1/9/2012	11502	RADIUM 228 COUNTING ERROR		0.56	0	0	0	PCI/L
1/9/2012	A-075	RADIUM 228 MDA95		0.2	1	0	0	PCI/L
12/5/2011	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
11/2/2011	11501	RADIUM 228	<	0	0	1	0	1
11/2/2011	11502	RADIUM 228 COUNTING ERROR		0.56	0	0	0	PCI/L

11/2/2011	A-075	RADIUM 228 MDA95		0.2	1	0	0	PCI/L
4/11/2011	32101	BROMODICHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
4/11/2011	32102	CARBON TETRACHLORIDE	<	0	0.5	0.5	0.5	UG/L
4/11/2011	32104	BROMOFORM (THM)	<	0	0	1	0	UG/L
4/11/2011	32105	DIBROMOCHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
4/11/2011	32106	CHLOROFORM (THM)	<	0	0	1	0	UG/L
4/11/2011	34010	TOLUENE	<	0	150	0.5	0.5	UG/L
4/11/2011	34030	BENZENE	<	0	1	0.5	0.5	UG/L
4/11/2011	34301	MONOCHLOROBENZENE	<	0	70	0.5	0.5	UG/L
4/11/2011	34311	CHLOROETHANE	<	0	0	0.5	0.5	UG/L
4/11/2011	34371	ETHYLBENZENE	<	0	300	0.5	0.5	UG/L
4/11/2011	34391	HEXACHLOROBUTADIENE	<	0	0	0.5	0.5	UG/L
4/11/2011	34413	BROMOMETHANE	<	0	0	0.5	0.5	UG/L
4/11/2011	34418	CHLOROMETHANE	<	0	0	0.5	0.5	UG/L
4/11/2011	34423	DICHLOROMETHANE	<	0	5	0.5	0.5	UG/L
4/11/2011	34475	TETRACHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
4/11/2011	34488	TRICHLOROFLUOROMETH ANE	<	0	150	5	5	UG/L
4/11/2011	34496	1,1-DICHLOROETHANE	<	0	5	0.5	0.5	UG/L
4/11/2011	34501	1,1-DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
4/11/2011	34506	1,1,1-TRICHLOROETHANE	<	0	200	0.5	0.5	UG/L
4/11/2011	34511	1,1,2-TRICHLOROETHANE	<	0	5	0.5	0.5	UG/L
4/11/2011	34516	1,1,2,2- TETRACHLOROETHANE	<	0	1	0.5	0.5	UG/L
4/11/2011	34531	1,2-DICHLOROETHANE	<	0	0.5	0.5	0.5	UG/L
4/11/2011	34536	1,2-DICHLOROBENZENE	<	0	600	0.5	0.5	UG/L
4/11/2011	34541	1,2-DICHLOROPROPANE	<	0	5	0.5	0.5	UG/L
4/11/2011	34546	TRANS-1,2- DICHLOROETHYLENE	<	0	10	0.5	0.5	UG/L
4/11/2011	34551	1,2,4-TRICHLOROBENZENE	<	0	5	0.5	5	UG/L
4/11/2011	34561	1,3-DICHLOROPROPENE (TOTAL)	<	0	0.5	0.5	0.5	UG/L
4/11/2011	34566	1,3-DICHLOROBENZENE	<	0	0	0.5	600	UG/L
4/11/2011	34571	1,4-DICHLOROBENZENE	<	0	5	0.5	0.5	UG/L
4/11/2011	34668	DICHLORODIFLUOROMETH ANE (FREON 12)	<	0	1000	0.5	1000	UG/L
4/11/2011	34696	NAPHTHALENE	<	0	170	0.5	170	UG/L

4/11/2011	34699	TRANS-1,3- DICHLOROPROPENE	<	0.5	0.5	0.5	0	UG/L
4/11/2011	34704	CIS-1,3-DICHLOROPROPENE	<	0.5	0.5	0.5	0.5	UG/L
4/11/2011	39175	VINYL CHLORIDE	<	0	0.5	0.5	0.5	UG/L
4/11/2011	39180	TRICHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
4/11/2011	46491	METHYL-TERT-BUTYL- ETHER (MTBE)	<	0	13	3	3	UG/L
4/11/2011	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
4/11/2011	77035	TERT-BUTYL ALCOHOL (TBA)	<	15	12	2	12	UG/L
4/11/2011	77093	CIS-1,2- DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
4/11/2011	77128	STYRENE	<	0	100	0.5	0.5	UG/L
4/11/2011	77135	O-XYLENE	<	0	0	0.5	0	UG/L
4/11/2011	77168	1,1-DICHLOROPROPENE	<	0	0	0.5	0.5	UG/L
4/11/2011	77170	2,2-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
4/11/2011	77173	1,3-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
4/11/2011	77222	1,2,4-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
4/11/2011	77223	ISOPROPYLBENZENE	<	0	770	0.5	770	UG/L
4/11/2011	77224	N-PROPYLBENZENE	<	0	260	0.5	260	UG/L
4/11/2011	77226	1,3,5-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
4/11/2011	77350	SEC-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
4/11/2011	77353	TERT-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
4/11/2011	77443	1,2,3-TRICHLOROPROPANE (1,2,3,-TCP)	<	0.5	0.005	0.005	0.005	UG/L
4/11/2011	77562	1,1,1,2- TETRACHLOROETHANE	<	0	0	0.5	0.5	UG/L
4/11/2011	77596	DIBROMOMETHANE	<	0	0	0.5	0.5	UG/L
4/11/2011	77613	1,2,3-TRICHLOROBENZENE	<	0	0	0.5	0.5	UG/L
4/11/2011	81551	XYLENES (TOTAL)	<	0	1750	0	1750	UG/L
4/11/2011	81555	BROMOBENZENE	<	0	0	0.5	0.5	UG/L
4/11/2011	81611	TRICHLOROTRIFLUOROET HANE (FREON 113)	<	0	1200	10	10	UG/L
4/11/2011	82080	TOTAL TRIHALOMETHANES	<	0	80	0	80	UG/L
4/11/2011	A-008	2-CHLOROTOLUENE	<	0	140	0.5	0.5	UG/L
4/11/2011	A-009	4-CHLOROTOLUENE	<	0	140	0.5	140	UG/L
4/11/2011	A-010	N-BUTYLBENZENE	<	0	260	0.5	70	UG/L
4/11/2011	A-011	P-ISOPROPYLTOLUENE	<	0.5	0	0	0	UG/L
4/11/2011	A-012	BROMOCHLOROMETHANE	<	0	0	0.5	0.5	UG/L
4/11/2011	A-014	M,P-XYLENE	<	0	0	0.5	0	UG/L

4/11/2011	A-033	ETHYL-TERT-BUTYL ETHER	<	0	0	3	0	UG/L
4/11/2011	A-034	TERT-AMYL-METHYL ETHER	<	0	0	3	0	UG/L
4/11/2011	A-036	DIISOPROPYL ETHER	<	0	0	3	0	UG/L
4/5/2010	1501	GROSS ALPHA		3.98	15	3	5	PCI/L
4/5/2010	1502	GROSS ALPHA COUNTING ERROR		0.29	0	0	0	PCI/L
4/5/2010	71850	NITRATE (AS NO3)		2.9	45	2	23	MG/L
8/11/2009	95	SPECIFIC CONDUCTANCE		180	1600	0	900	US
8/11/2009	A-031	PERCHLORATE	<	0	6	4	4	UG/L
3/24/2009	95	SPECIFIC CONDUCTANCE		170	1600	0	900	US
3/24/2009	A-031	PERCHLORATE	<	0	6	4	4	UG/L
12/30/2008	81	COLOR		3	15	0	15	UNITS
12/30/2008	86	ODOR THRESHOLD @ 60 C		1	3	1	3	TON
12/30/2008	95	SPECIFIC CONDUCTANCE		180	1600	0	900	US
12/30/2008	403	PH, LABORATORY		6.5	0	0	0	
12/30/2008	410	ALKALINITY (TOTAL) AS CACO3		38	0	0	0	MG/L
12/30/2008	440	BICARBONATE ALKALINITY		38	0	0	0	MG/L
12/30/2008	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
12/30/2008	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
12/30/2008	900	HARDNESS (TOTAL) AS CACO3		54	0	0	0	MG/L
12/30/2008	916	CALCIUM		15	0	0	0	MG/L
12/30/2008	927	MAGNESIUM		4.4	0	0	0	MG/L
12/30/2008	929	SODIUM		10	0	0	0	MG/L
12/30/2008	937	POTASSIUM	<	2	0	0	0	MG/L
12/30/2008	940	CHLORIDE		9.8	500	0	250	MG/L
12/30/2008	945	SULFATE		13	500	0.5	250	MG/L
12/30/2008	951	FLUORIDE (F) (NATURAL- SOURCE)	<	0	2	0.1	2	MG/L
12/30/2008	1002	ARSENIC	<	0	10	2	5	UG/L
12/30/2008	1007	BARIUM	<	0	1000	100	1000	UG/L
12/30/2008	1012	BERYLLIUM	<	0	4	1	4	UG/L
12/30/2008	1027	CADMIUM	<	0	5	1	5	UG/L
12/30/2008	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
12/30/2008	1042	COPPER	<	0	1000	50	1000	UG/L
12/30/2008	1045	IRON	<	0	300	100	300	UG/L
12/30/2008	1051	LEAD	<	0	0	5	15	UG/L
12/30/2008	1055	MANGANESE	<	0	50	20	50	UG/L

12/30/2008	1059	THALLIUM		0	2	1	2	UG/L
12/30/2008	1039	NICKEL	<	0	100	10	100	UG/L UG/L
12/30/2008	1007	SILVER	<	0	100	10	100	UG/L
12/30/2008	1092	ZINC	<	0	5000	50	5000	UG/L
12/30/2008	1097	ANTIMONY	<	0	6	6	6	UG/L
12/30/2008	1105	ALUMINUM	<	0	1000	50	200	UG/L
12/30/2008	1147	SELENIUM	<	0	50	5	50	UG/L
12/30/2008	1291	CYANIDE	<	0	150	100	150	UG/L
12/30/2008	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L
12/30/2008	46491	METHYL-TERT-BUTYL- ETHER (MTBE)	<	0	13	3	3	UG/L
12/30/2008	70300	TOTAL DISSOLVED SOLIDS		110	1000	0	500	MG/L
12/30/2008	71814	LANGELIER INDEX AT SOURCE TEMP.	<	0	0	0	0	
12/30/2008	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
12/30/2008	71850	NITRATE (AS NO3)		20	45	2	23	MG/L
12/30/2008	71900	MERCURY	<	0	2	1	2	UG/L
12/30/2008	82079	TURBIDITY, LABORATORY		0.67	5	0.1	5	NTU
12/30/2008	A-029	NITRATE + NITRITE (AS N)		4500	10	0.4	5	mg/L
6/16/2008	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
4/14/2008	95	SPECIFIC CONDUCTANCE		150	1600	0	900	US
4/14/2008	A-031	PERCHLORATE	<	0	6	4	4	UG/L
12/20/2007	81	COLOR		3	15	0	15	UNITS
12/20/2007	86	ODOR THRESHOLD @ 60 C	<	0	3	1	3	TON
12/20/2007	95	SPECIFIC CONDUCTANCE		170	1600	0	900	US
12/20/2007	403	PH, LABORATORY		6.4	0	0	0	
12/20/2007	410	ALKALINITY (TOTAL) AS CACO3		42	0	0	0	MG/L
12/20/2007	440	BICARBONATE ALKALINITY		42	0	0	0	MG/L
12/20/2007	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
12/20/2007	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
12/20/2007	900	HARDNESS (TOTAL) AS CACO3		53	0	0	0	MG/L
12/20/2007	916	CALCIUM		14	0	0	0	MG/L
12/20/2007	927	MAGNESIUM		4.2	0	0	0	MG/L
12/20/2007	929	SODIUM		10	0	0	0	MG/L
12/20/2007	937	POTASSIUM	<	2	0	0	0	MG/L

12/20/2007	940	CHLORIDE		11	500	0	250	MG/L
12/20/2007	945	SULFATE		14	500	0.5	250	MG/L
12/20/2007	951	FLUORIDE (F) (NATURAL- SOURCE)	<	0	2	0.1	2	MG/L
12/20/2007	1002	ARSENIC	<	0	10	2	5	UG/L
12/20/2007	1007	BARIUM	<	0	1000	100	1000	UG/L
12/20/2007	1012	BERYLLIUM	<	0	4	1	4	UG/L
12/20/2007	1027	CADMIUM	<	0	5	1	5	UG/L
12/20/2007	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
12/20/2007	1042	COPPER	<	0	1000	50	1000	UG/L
12/20/2007	1045	IRON		200	300	100	300	UG/L
12/20/2007	1051	LEAD	<	0	0	5	15	UG/L
12/20/2007	1055	MANGANESE	<	0	50	20	50	UG/L
12/20/2007	1059	THALLIUM	<	0	2	1	2	UG/L
12/20/2007	1067	NICKEL	<	0	100	10	100	UG/L
12/20/2007	1077	SILVER ZINC	<	0	100 5000	10	100	UG/L
12/20/2007	1092 1097	ANTIMONY	<	0	6	50 6	5000	UG/L UG/L
12/20/2007	1105	ALUMINUM	<	0	1000	50	200	UG/L UG/L
12/20/2007	1103	SELENIUM	<	0	50	5	50	UG/L
12/20/2007	1291	CYANIDE	<	100	150	100	150	UG/L
12/20/2007	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L
12/20/2007	46491	METHYL-TERT-BUTYL- ETHER (MTBE)	<	0	13	3	3	UG/L
12/20/2007	70300	TOTAL DISSOLVED SOLIDS		110	1000	0	500	MG/L
12/20/2007	71814	LANGELIER INDEX AT SOURCE TEMP.	<	0	0	0	0	
12/20/2007	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
12/20/2007	71850	NITRATE (AS NO3)		7.97	45	2	23	MG/L
12/20/2007	71900	MERCURY	<	0	2	1	2	UG/L
12/20/2007	82079	TURBIDITY, LABORATORY		1.1	5	0.1	5	NTU
12/20/2007	A-029	NITRATE + NITRITE (AS N)		1828	10	0.4	5	mg/L
12/20/2006	81	COLOR	<	3	15	0	15	UNITS
12/20/2006	86	ODOR THRESHOLD @ 60 C	<	0	3	1	3	TON
12/20/2006	95	SPECIFIC CONDUCTANCE		160	1600	0	900	US
12/20/2006	403	PH, LABORATORY		6.1	0	0	0	
12/20/2006	410	ALKALINITY (TOTAL) AS CACO3		42	0	0	0	MG/L
12/20/2006	440	BICARBONATE ALKALINITY		42	0	0	0	MG/L

12/20/2006	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
12/20/2006	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
12/20/2006	900	HARDNESS (TOTAL) AS CACO3		54	0	0	0	MG/L
12/20/2006	916	CALCIUM		15	0	0	0	MG/L
12/20/2006	927	MAGNESIUM		4.1	0	0	0	MG/L
12/20/2006	929	SODIUM		9.5	0	0	0	MG/L
12/20/2006	940	CHLORIDE		11	500	0	250	MG/L
12/20/2006	945	SULFATE		13	500	0.5	250	MG/L
12/20/2006	951	FLUORIDE (F) (NATURAL- SOURCE)	<	0	2	0.1	2	MG/L
12/20/2006	1002	ARSENIC	<	0	10	2	5	UG/L
12/20/2006	1007	BARIUM	<	0	1000	100	1000	UG/L
12/20/2006	1012	BERYLLIUM	<	0	4	1	4	UG/L
12/20/2006	1027	CADMIUM	<	0	5	1	5	UG/L
12/20/2006	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
12/20/2006	1042	COPPER	<	0	1000	50	1000	UG/L
12/20/2006	1045	IRON	<	0	300	100	300	UG/L
12/20/2006	1055	MANGANESE	<	0	50	20	50	UG/L
12/20/2006	1059	THALLIUM	<	0	2	1	2	UG/L
12/20/2006	1067	NICKEL	<	0	100	10	100	UG/L
12/20/2006	1077	SILVER	<	0	100	10	100	UG/L
12/20/2006	1092	ZINC	<	0	5000	50	5000	UG/L
12/20/2006	1097	ANTIMONY	<	0	6	6	6	UG/L
12/20/2006	1105	ALUMINUM	<	0	1000	50	200	UG/L
12/20/2006	1147	SELENIUM	<	0	50	5	50	UG/L
12/20/2006	1501	GROSS ALPHA		0.01	15	3	5	PCI/L
12/20/2006	1502	GROSS ALPHA COUNTING ERROR		0.39	0	0	0	PCI/L
12/20/2006	28012	URANIUM (PCI/L)		0.01	20	1	20	PCI/L
12/20/2006	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L
12/20/2006	46491	METHYL-TERT-BUTYL- ETHER (MTBE)	<	0	13	3	3	UG/L
12/20/2006	70300	TOTAL DISSOLVED SOLIDS		110	1000	0	500	MG/L
12/20/2006	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
12/20/2006	71850	NITRATE (AS NO3)		6.6	45	2	23	MG/L
12/20/2006	71900	MERCURY	<	0	2	1	2	UG/L
12/20/2006	79743	GLYPHOSATE	<	0	700	25	25	UG/L
12/20/2006	82079	TURBIDITY, LABORATORY		0.06	5	0.1	5	NTU
12/20/2006	82383	AGGRSSIVE INDEX (CORROSIVITY)	-	2.4	0	0	0	
12/20/2006	A-001	THIOBENCARB	<	0	70	1	0	

4/19/2005	32101	BROMODICHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
4/19/2005	32102	CARBON TETRACHLORIDE	<	0	0.5	0.5	0.5	UG/L
4/19/2005	32104	BROMOFORM (THM)	<	0	0	1	0	UG/L
4/19/2005	32105	DIBROMOCHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
4/19/2005	32106	CHLOROFORM (THM)	<	0	0	1	0	UG/L
4/19/2005	34010	TOLUENE	<	0	150	0.5	0.5	UG/L
4/19/2005	34030	BENZENE	<	0	1	0.5	0.5	UG/L
4/19/2005	34301	MONOCHLOROBENZENE	<	0	70	0.5	0.5	UG/L
4/19/2005	34311	CHLOROETHANE	<	0	0	0.5	0.5	UG/L
4/19/2005	34371	ETHYLBENZENE	<	0	300	0.5	0.5	UG/L
4/19/2005	34391	HEXACHLOROBUTADIENE	<	0	0	0.5	0.5	UG/L
4/19/2005	34413	BROMOMETHANE	<	5	0	0.5	0.5	UG/L
4/19/2005	34418	CHLOROMETHANE	<	0	0	0.5	0.5	UG/L
4/19/2005	34423	DICHLOROMETHANE	<	0	5	0.5	0.5	UG/L
4/19/2005	34475	TETRACHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
4/19/2005	34488	TRICHLOROFLUOROMETH ANE	<	0	150	5	5	UG/L
4/19/2005	34496	1,1-DICHLOROETHANE	<	0	5	0.5	0.5	UG/L
4/19/2005	34501	1,1-DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
4/19/2005	34506	1,1,1-TRICHLOROETHANE	<	0	200	0.5	0.5	UG/L
4/19/2005	34511	1,1,2-TRICHLOROETHANE	<	0	5	0.5	0.5	UG/L
4/19/2005	34516	1,1,2,2- TETRACHLOROETHANE	<	0	1	0.5	0.5	UG/L
4/19/2005	34531	1,2-DICHLOROETHANE	<	0	0.5	0.5	0.5	UG/L
4/19/2005	34536	1,2-DICHLOROBENZENE	<	0	600	0.5	0.5	UG/L
4/19/2005	34541	1,2-DICHLOROPROPANE	<	0	5	0.5	0.5	UG/L
4/19/2005	34546	TRANS-1,2- DICHLOROETHYLENE	<	0	10	0.5	0.5	UG/L
4/19/2005	34551	1,2,4-TRICHLOROBENZENE	<	0	5	0.5	5	UG/L
4/19/2005	34561	1,3-DICHLOROPROPENE (TOTAL)	<	0	0.5	0.5	0.5	UG/L
4/19/2005	34566	1,3-DICHLOROBENZENE	<	0	0	0.5	600	UG/L
4/19/2005	34571	1,4-DICHLOROBENZENE	<	0	5	0.5	0.5	UG/L
4/19/2005	34668	DICHLORODIFLUOROMETH ANE (FREON 12)	<	0	1000	0.5	1000	UG/L
4/19/2005	34696	NAPHTHALENE	<	0	170	0.5	170	UG/L
4/19/2005	39175	VINYL CHLORIDE	<	0	0.5	0.5	0.5	UG/L

4/19/2005	39180	TRICHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
4/19/2005	46491	METHYL-TERT-BUTYL- ETHER (MTBE)	<	0	13	3	3	UG/L
4/19/2005	77093	CIS-1,2- DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
4/19/2005	77128	STYRENE	<	0	100	0.5	0.5	UG/L
4/19/2005	77135	O-XYLENE	<	0	0	0.5	0	UG/L
4/19/2005	77168	1,1-DICHLOROPROPENE	<	0	0	0.5	0.5	UG/L
4/19/2005	77170	2,2-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
4/19/2005	77173	1,3-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
4/19/2005	77222	1,2,4-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
4/19/2005	77223	ISOPROPYLBENZENE	<	0	770	0.5	770	UG/L
4/19/2005	77224	N-PROPYLBENZENE	<	0.5	260	0.5	260	UG/L
4/19/2005	77226	1,3,5-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
4/19/2005	77350	SEC-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
4/19/2005	77353	TERT-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
4/19/2005	77443	1,2,3-TRICHLOROPROPANE (1,2,3,-TCP)	<	0.5	0.005	0.005	0.005	UG/L
4/19/2005	77562	1,1,1,2- TETRACHLOROETHANE	<	0	0	0.5	0.5	UG/L
4/19/2005	77596	DIBROMOMETHANE	<	0	0	0.5	0.5	UG/L
4/19/2005	77613	1,2,3-TRICHLOROBENZENE	<	0	0	0.5	0.5	UG/L
4/19/2005	81551	XYLENES (TOTAL)	<	0	1750	0	1750	UG/L
4/19/2005	81555	BROMOBENZENE	<	0	0	0.5	0.5	UG/L
4/19/2005	81611	TRICHLOROTRIFLUOROET HANE (FREON 113)	<	0	1200	10	10	UG/L
4/19/2005	82080	TOTAL TRIHALOMETHANES	<	0	80	0	80	UG/L
4/19/2005	A-008	2-CHLOROTOLUENE	<	0	140	0.5	0.5	UG/L
4/19/2005	A-009	4-CHLOROTOLUENE	<	0	140	0.5	140	UG/L
4/19/2005	A-010	N-BUTYLBENZENE	<	0	260	0.5	70	UG/L
4/19/2005	A-011	P-ISOPROPYLTOLUENE	<	0	0	0	0	UG/L
4/19/2005	A-012	BROMOCHLOROMETHANE	<	0	0	0.5	0.5	UG/L
4/19/2005	A-014	M,P-XYLENE	<	0	0	0.5	0	UG/L
4/19/2005	A-033	ETHYL-TERT-BUTYL ETHER	<	0	0	3	0	UG/L
4/19/2005	A-034	TERT-AMYL-METHYL ETHER	<	0	0	3	0	UG/L
4/19/2005	A-036	DIISOPROPYL ETHER	<	0	0	3	0	UG/L
1/20/2005	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
12/21/2004	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
12/21/2004	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L

3/4/2004	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
3/4/2004	71850	NITRATE (AS NO3)		2.1	45	2	23	MG/L
1/31/2002	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
1/31/2002	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
1/31/2002	79743	GLYPHOSATE	<	0	700	25	25	UG/L
12/28/2001	1012	BERYLLIUM	<	0	4	1	4	UG/L
12/28/2001	1059	THALLIUM	<	0	2	1	2	UG/L
12/28/2001	1067	NICKEL	<	0	100	10	100	UG/L
12/28/2001	1097	ANTIMONY	<	0	6	6	6	UG/L
12/28/2001	1291	CYANIDE	<	0	150	100	150	UG/L
12/28/2001	1501	GROSS ALPHA		0.02	15	3	5	PCI/L
12/28/2001	1502	GROSS ALPHA COUNTING ERROR		0.52	0	0	0	PCI/L
12/28/2001	34247	BENZO (A) PYRENE	<	0	0.2	0.1	0.1	UG/L
12/28/2001	34386	HEXACHLOROCYCLOPENT ADIENE	<	0	50	1	1	UG/L
12/28/2001	34676	2,3,7,8-TCDD (DIOXIN)	<	0	30	5	30	PG/L
12/28/2001	38432	DALAPON	<	0	200	10	10	UG/L
12/28/2001	38458	DIMETHOATE	<	0	0	0	0	UG/L
12/28/2001	38533	PROPACHLOR	<	0	0.5	0.5	0.5	UG/L
12/28/2001	38710	BENTAZON	<	0	18	2	2	UG/L
12/28/2001	38761	DIBROMOCHLOROPROPAN E (DBCP)	<	0	0.2	0.01	0.01	UG/L
12/28/2001	38865	OXAMYL	<	0	50	20	50	UG/L
12/28/2001	38926	ENDOTHALL	<	0	100	45	45	UG/L
12/28/2001	39032	PENTACHLOROPHENOL	<	0	1	0.2	0.2	UG/L
12/28/2001	39033	ATRAZINE	<	0	1	0.5	1	UG/L
12/28/2001	39045	2,4,5-TP (SILVEX)	<	0	50	1	1	UG/L
12/28/2001	39051	METHOMYL	<	0	0	2	2	UG/L
12/28/2001	39053	ALDICARB	<	0	0	3	7	UG/L
12/28/2001	39055	SIMAZINE	<	0	4	1	1	UG/L
12/28/2001	39057	PROMETRYN	<	0	0	2	2	UG/L
12/28/2001	39100	DI(2- ETHYLHEXYL)PHTHALATE	<	0	4	3	3	UG/L
12/28/2001	39330	ALDRIN	<	0	0	0.075	0.002	UG/L
12/28/2001	39340	LINDANE	<	0	0.2	0.2	0.2	UG/L
12/28/2001	39350	CHLORDANE	<	0	0.1	0.1	0.1	UG/L
12/28/2001	39356	METOLACHLOR	<	0.5	0	0	0	UG/L
12/28/2001	39380	DIELDRIN	<	0	0	0.02	0.002	UG/L
12/28/2001	39390	ENDRIN	<	0	2	0.1	0.1	UG/L
12/28/2001	39400	TOXAPHENE	<	0	3	1	1	UG/L
12/28/2001	39410	HEPTACHLOR	<	0	0.01	0.01	0.01	UG/L
12/28/2001	39420	HEPTACHLOR EPOXIDE	<	0	0.01	0.01	0.01	UG/L
, _ 0, _ 0 0 1	39480	METHOXYCHLOR		0	30	10	30	UG/L

12/28/2001	39516	POLYCHLORINATED BIPHENYLS, TOTAL, AS	<	0	0.5	0.5	0.5	UG/L
12/20/2001	3,510	DCB			0.5	0.5	0.5	CG/L
12/28/2001	39570	DIAZINON	<	0	1.2	0	0	UG/L
12/28/2001	39700	HEXACHLOROBENZENE	<	0	1	0.5	0.5	UG/L
12/28/2001	39720	PICLORAM	<	0	500	1	1	UG/L
12/28/2001	39730	2,4-D	<	0	70	10	10	UG/L
12/28/2001	77651	ETHYLENE DIBROMIDE (EDB)	<	0	0.05	0.02	0.02	UG/L
12/28/2001	77700	CARBARYL	<	0	0	5	700	UG/L
12/28/2001	77825	ALACHLOR	<	0	2	1	1	UG/L
12/28/2001	77860	BUTACHLOR	<	0	0	0.38	0.38	UG/L
12/28/2001	78885	DIQUAT	<	0	20	4	4	UG/L
12/28/2001	79743	GLYPHOSATE	<	0	700	25	25	UG/L
12/28/2001	81287	DINOSEB	<	0	7	2	2	UG/L
12/28/2001	81405	CARBOFURAN	<	0	18	5	5	UG/L
12/28/2001	81408	METRIBUZIN	<	0.25	0	0	0	UG/L
12/28/2001	82052	DICAMBA	<	0	0	1.5	0	UG/L
12/28/2001	82198	BROMACIL	<	0	0	10	10	UG/L
12/28/2001	82199	MOLINATE	<	0	20	2	2	UG/L
12/28/2001	A-001	THIOBENCARB	<	0	70	1	0	0.0/2
12/28/2001	A-019	ALDICARB SULFOXIDE	<	0	0	3	3	UG/L
12/28/2001	A-020	ALDICARB SULFONE	<	0	0	4	4	UG/L
12/28/2001	A-021	3-HYDROXYCARBOFURAN	<	0	0	3	3	UG/L
12/28/2001	A-026	DI(2- ETHYLHEXYL)ADIPATE	<	0	400	5	5	UG/L
2/10/2000	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
2/10/2000	1012	BERYLLIUM	<	0	4	1	4	UG/L
2/10/2000	1059	THALLIUM	<	0	2	1	2	UG/L
2/10/2000	1067	NICKEL	<	0	100	10	100	UG/L
2/10/2000	1097	ANTIMONY	<	0	6	6	6	UG/L
2/10/2000	1291	CYANIDE	<	0	150	100	150	UG/L
2/10/2000	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
2/13/1997	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
2/13/1997	1012	BERYLLIUM	<	0	4	1	4	UG/L
2/13/1997	1059	THALLIUM	<	0	2	1	2	UG/L
2/13/1997	1067	NICKEL	<	0	100	10	100	UG/L
2/13/1997	1097	ANTIMONY	<	0	6	6	6	UG/L
2/13/1997	71850	NITRATE (AS NO3)		2.1	45	2	23	MG/L
3/4/1992	95	SPECIFIC CONDUCTANCE		130	1600	0	900	US
3/4/1992	403	PH, LABORATORY		6.3	0	0	0	
3/4/1992	410	ALKALINITY (TOTAL) AS CACO3		44	0	0	0	MG/L
3/4/1992	440	BICARBONATE ALKALINITY		44	0	0	0	MG/L

3/4/1992	445	CARBONATE ALKALINITY	<	0	0	0	0	MG/L
3/4/1992	900	HARDNESS (TOTAL) AS CACO3		48	0	0	0	MG/L
3/4/1992	916	CALCIUM		13	0	0	0	MG/L
3/4/1992	927	MAGNESIUM		3.8	0	0	0	MG/L
3/4/1992	929	SODIUM		9.9	0	0	0	MG/L
3/4/1992	940	CHLORIDE		10	500	0	250	MG/L
3/4/1992	945	SULFATE		14	500	0.5	250	MG/L
3/4/1992	951	FLUORIDE (F) (NATURAL- SOURCE)		0.11	2	0.1	2	MG/L
3/4/1992	1002	ARSENIC	<	0	10	2	5	UG/L
3/4/1992	1007	BARIUM	<	0	1000	100	1000	UG/L
3/4/1992	1027	CADMIUM	<	0	5	1	5	UG/L
3/4/1992	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
3/4/1992	1042	COPPER	<	0	1000	50	1000	UG/L
3/4/1992	1045	IRON		400	300	100	300	UG/L
3/4/1992	1051	LEAD	<	0	0	5	15	UG/L
3/4/1992	1055	MANGANESE		56	50	20	50	UG/L
3/4/1992	1077	SILVER	<	0	100	10	100	UG/L
3/4/1992	1092	ZINC	<	0	5000	50	5000	UG/L
3/4/1992	1105	ALUMINUM	<	0	1000	50	200	UG/L
3/4/1992	1147	SELENIUM	<	0	50	5	50	UG/L
3/4/1992	38260	FOAMING AGENTS (MBAS)	<	0	0.5	0	0.5	MG/L
3/4/1992	39340	LINDANE	<	0	0.2	0.2	0.2	UG/L
3/4/1992	39390	ENDRIN	<	0	2	0.1	0.1	UG/L
3/4/1992	39400	TOXAPHENE	<	0	3	1	1	UG/L
3/4/1992	39480	METHOXYCHLOR	<	0	30	10	30	UG/L
3/4/1992	70300	TOTAL DISSOLVED SOLIDS		97	1000	0	500	MG/L
3/4/1992	71813	LANGELIER INDEX @ 60 C	-	2.7	0	0	0	
3/4/1992	71830	HYDROXIDE ALKALINITY	<	0	0	0	0	MG/L
3/4/1992	71850	NITRATE (AS NO3)		0.27	45	2	23	MG/L
3/4/1992	71900	MERCURY	<	0	2	1	2	UG/L
4/11/1990	403	PH, LABORATORY		6.3	0	0	0	
4/11/1990	410	ALKALINITY (TOTAL) AS CACO3		40	0	0	0	MG/L
4/11/1990	440	BICARBONATE ALKALINITY		40	0	0	0	MG/L
4/11/1990	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
4/11/1990	916	CALCIUM		13	0	0	0	MG/L
4/11/1990	951	FLUORIDE (F) (NATURAL- SOURCE)		0.1	2	0.1	2	MG/L

4/11/1990	1002	ARSENIC	<	5	10	2	5	UG/L
4/11/1990	1007	BARIUM		30	1000	100	1000	UG/L
4/11/1990	1027	CADMIUM	<	1	5	1	5	UG/L
4/11/1990	1034	CHROMIUM (TOTAL)	<	5	50	10	50	UG/L
4/11/1990	1051	LEAD	<	5	0	5	15	UG/L
4/11/1990	1077	SILVER	<	2	100	10	100	UG/L
4/11/1990	1105	ALUMINUM		100	1000	50	200	UG/L
4/11/1990	1147	SELENIUM	<	5	50	5	50	UG/L
4/11/1990	70300	TOTAL DISSOLVED SOLIDS		54	1000	0	500	MG/L
4/11/1990	71813	LANGELIER INDEX @ 60 C	-	2.7	0	0	0	
4/11/1990	71814	LANGELIER INDEX AT SOURCE TEMP.	-	2.7	0	0	0	
4/11/1990	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
4/11/1990	71850	NITRATE (AS NO3)		0.2	45	2	23	MG/L
4/11/1990	71900	MERCURY	<	1	2	1	2	UG/L
9/27/1989	32101	BROMODICHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
9/27/1989	32102	CARBON TETRACHLORIDE	<	0	0.5	0.5	0.5	UG/L
9/27/1989	32104	BROMOFORM (THM)	<	0	0	1	0	UG/L
9/27/1989	32105	DIBROMOCHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
9/27/1989	32106	CHLOROFORM (THM)	<	0	0	1	0	UG/L
9/27/1989	34010	TOLUENE	<	0	150	0.5	0.5	UG/L
9/27/1989	34030	BENZENE	<	0	1	0.5	0.5	UG/L
9/27/1989	34301	MONOCHLOROBENZENE	<	0	70	0.5	0.5	UG/L
9/27/1989	34311	CHLOROETHANE	<	0	0	0.5	0.5	UG/L
9/27/1989	34371	ETHYLBENZENE	<	0	300	0.5	0.5	UG/L
9/27/1989	34391	HEXACHLOROBUTADIENE	<	0	0	0.5	0.5	UG/L
9/27/1989	34413	BROMOMETHANE	<	0	0	0.5	0.5	UG/L
9/27/1989	34418	CHLOROMETHANE	<	0	0	0.5	0.5	UG/L
9/27/1989	34423	DICHLOROMETHANE	<	0	5	0.5	0.5	UG/L
9/27/1989	34475	TETRACHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
9/27/1989	34488	TRICHLOROFLUOROMETH ANE	<	0	150	5	5	UG/L
9/27/1989	34496	1,1-DICHLOROETHANE	<	0	5	0.5	0.5	UG/L
9/27/1989	34501	1,1-DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
9/27/1989	34506	1,1,1-TRICHLOROETHANE	<	0	200	0.5	0.5	UG/L

9/27/1989	34511	1,1,2-TRICHLOROETHANE	<	0	5	0.5	0.5	UG/L
9/27/1989	34516	1,1,2,2- TETRACHLOROETHANE	<	0	1	0.5	0.5	UG/L
9/27/1989	34531	1,2-DICHLOROETHANE	<	0	0.5	0.5	0.5	UG/L
9/27/1989	34536	1,2-DICHLOROBENZENE	<	0	600	0.5	0.5	UG/L
9/27/1989	34541	1,2-DICHLOROPROPANE	<	0	5	0.5	0.5	UG/L
9/27/1989	34546	TRANS-1,2- DICHLOROETHYLENE	<	0	10	0.5	0.5	UG/L
9/27/1989	34551	1,2,4-TRICHLOROBENZENE	<	0	5	0.5	5	UG/L
9/27/1989	34561	1,3-DICHLOROPROPENE (TOTAL)	<	0	0.5	0.5	0.5	UG/L
9/27/1989	34566	1,3-DICHLOROBENZENE	<	0	0	0.5	600	UG/L
9/27/1989	34571	1,4-DICHLOROBENZENE	<	0	5	0.5	0.5	UG/L
9/27/1989	34668	DICHLORODIFLUOROMETH ANE (FREON 12)	<	0	1000	0.5	1000	UG/L
9/27/1989	34696	NAPHTHALENE	<	0	170	0.5	170	UG/L
9/27/1989	39175	VINYL CHLORIDE	<	0	0.5	0.5	0.5	UG/L
9/27/1989	39180	TRICHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
9/27/1989	77093	CIS-1,2- DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
9/27/1989	77128	STYRENE	<	0	100	0.5	0.5	UG/L
9/27/1989	77135	O-XYLENE	<	0	0	0.5	0	UG/L
9/27/1989	77168	1,1-DICHLOROPROPENE	<	0	0	0.5	0.5	UG/L
9/27/1989	77170	2,2-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
9/27/1989	77173	1,3-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
9/27/1989	77222	1,2,4-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
9/27/1989	77223	ISOPROPYLBENZENE	<	0	770	0.5	770	UG/L
9/27/1989	77224	N-PROPYLBENZENE	<	0	260	0.5	260	UG/L
9/27/1989	77226	1,3,5-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
9/27/1989	77350	SEC-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
9/27/1989	77353	TERT-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
9/27/1989	77443	1,2,3-TRICHLOROPROPANE (1,2,3,-TCP)	<	0	0.005	0.005	0.005	UG/L
9/27/1989	77562	1,1,1,2- TETRACHLOROETHANE	<	0	0	0.5	0.5	UG/L
9/27/1989	77596	DIBROMOMETHANE	<	0	0	0.5	0.5	UG/L
9/27/1989	77613	1,2,3-TRICHLOROBENZENE	<	0	0	0.5	0.5	UG/L
9/27/1989	78132	P-XYLENE	<	0	0	0.5	0	UG/L
9/27/1989	81551	XYLENES (TOTAL)	<	0	1750	0	1750	UG/L
9/27/1989	81555	BROMOBENZENE	<	0	0	0.5	0.5	UG/L

9/27/1989	81611	TRICHLOROTRIFLUOROET	<		1200	10	10	UG/L
		HANE (FREON 113)		0	0		0	
9/27/1989	81710	M-XYLENE	<	10	0	0.5	1 0	UG/L
9/27/1989	82080	TOTAL TRIHALOMETHANES	<	0	80	0	80	UG/L
9/27/1989	A-008	2-CHLOROTOLUENE	<	0	140	0.5	0.5	UG/L
9/27/1989	A-009	4-CHLOROTOLUENE	<	0	140	0.5	140	UG/L
9/27/1989	A-010	N-BUTYLBENZENE	<	0	260	0.5	70	UG/L
9/27/1989	A-011	P-ISOPROPYLTOLUENE	<	0	0	0	0	UG/L
9/27/1989	A-012	BROMOCHLOROMETHANE	<	0	0	0.5	0.5	UG/L
9/27/1989	A-014	M,P-XYLENE	<	0	0	0.5	0	UG/L
2/27/1989	95	SPECIFIC CONDUCTANCE		190	1600	0	900	US
2/27/1989	403	PH, LABORATORY		6.9	0	0	0	
2/27/1989	410	ALKALINITY (TOTAL) AS CACO3		45	0	0	0	MG/L
2/27/1989	440	BICARBONATE ALKALINITY		45	0	0	0	MG/L
2/27/1989	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
2/27/1989	900	HARDNESS (TOTAL) AS CACO3		54	0	0	0	MG/L
2/27/1989	916	CALCIUM		15	0	0	0	MG/L
2/27/1989	927	MAGNESIUM		4	0	0	0	MG/L
2/27/1989	929	SODIUM		10	0	0	0	MG/L
2/27/1989	940	CHLORIDE		11	500	0	250	MG/L
2/27/1989	945	SULFATE		14	500	0.5	250	MG/L
2/27/1989	951	FLUORIDE (F) (NATURAL- SOURCE)		0.1	2	0.1	2	MG/L
2/27/1989	1002	ARSENIC	<	5	10	2	5	UG/L
2/27/1989	1007	BARIUM		30	1000	100	1000	UG/L
2/27/1989	1027	CADMIUM	<	1	5	1	5	UG/L
2/27/1989	1034	CHROMIUM (TOTAL)	<	5	50	10	50	UG/L
2/27/1989	1042	COPPER	<	50	1000	50	1000	UG/L
2/27/1989	1045	IRON		1500	300	100	300	UG/L
2/27/1989	1051	LEAD	<	10	0	5	15	UG/L
2/27/1989	1055	MANGANESE		40	50	20	50	UG/L
2/27/1989	1077	SILVER	<	2	100	10	100	UG/L
2/27/1989	1092	ZINC		380	5000	50	5000	UG/L
2/27/1989	1147	SELENIUM	<	5	50	5	50	UG/L
2/27/1989	38260	FOAMING AGENTS (MBAS)	<	0.02	0.5	0	0.5	MG/L
2/27/1989	70300	TOTAL DISSOLVED SOLIDS		67	1000	0	500	MG/L
2/27/1989	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L

2/27/1989	71850	NITRATE (AS NO3)		0.1	45	2	23	MG/L
2/27/1989	71900	MERCURY	<	1	2	1	2	UG/L

		Joe Well - Raw	(1210022	2-008)				
Sampling Date	Storet Number	Group/Constituent Identification	XMOD	Result	MCL	DLR	Trigger	Unit
8/3/2015	618	NITRATE (as N)		0.51	10	0.4	5	mg/L
4/21/2015	71850	NITRATE (AS NO3)		2.6	45	2	23	MG/L
12/15/2014	1032	CHROMIUM, HEXAVALENT	<	0	10	1	10	UG/L
9/9/2014	71850	NITRATE (AS NO3)		2.2	45	2	23	MG/L
8/12/2014	71850	NITRATE (AS NO3)		0	45	2	23	MG/L
6/17/2014	71850	NITRATE (AS NO3)		3.3	45	2	23	MG/L
5/13/2014	71850	NITRATE (AS NO3)		3.3	45	2	23	MG/L
4/15/2014	71850	NITRATE (AS NO3)		4.7	45	2	23	MG/L
3/4/2014	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
2/18/2014	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
1/21/2014	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
12/10/2013	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
11/19/2013	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
10/29/2013	95	SPECIFIC CONDUCTANCE		360	1600	0	900	US
10/29/2013	403	PH, LABORATORY		7.5	0	0	0	
10/29/2013	410	ALKALINITY (TOTAL) AS CACO3		140	0	0	0	MG/L
10/29/2013	916	CALCIUM		64	0	0	0	MG/L
10/29/2013	70300	TOTAL DISSOLVED SOLIDS		230	1000	0	500	MG/L
10/29/2013	71814	LANGELIER INDEX AT SOURCE TEMP.		0.035	0	0	0	
10/29/2013	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
10/29/2013	A-031	PERCHLORATE	<	0	6	4	4	UG/L
5/7/2013	1045	IRON	<	0	300	100	300	UG/L
5/7/2013	1055	MANGANESE	<	0	50	20	50	UG/L
4/15/2013	81	COLOR	<	3	15	0	15	UNITS
4/15/2013	86	ODOR THRESHOLD @ 60 C	<	0	3	1	3	TON
4/15/2013	95	SPECIFIC CONDUCTANCE		330	1600	0	900	US
4/15/2013	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
4/15/2013	940	CHLORIDE		7.9	500	0	250	MG/L
4/15/2013	945	SULFATE		36	500	0.5	250	MG/L

4/15/2013 4/15/2013	1002			0.11	2	0.1	2	MG/L
4/15/2013		SOURCE) ARSENIC	<	0	10	2	5	UG/L
	1007	BARIUM	<	0	1000	100	1000	UG/L
4/15/2013	1012	BERYLLIUM	<	0	4	1	4	UG/L
4/15/2013	1027	CADMIUM	<	0	5	1	5	UG/L
4/15/2013	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
4/15/2013	1042	COPPER	<	0	1000	50	1000	UG/L
4/15/2013	1059	THALLIUM	<	0	2	1	2	UG/L
4/15/2013	1067	NICKEL	<	0	100	10	100	UG/L
4/15/2013	1077	SILVER	<	0	100	10	100	UG/L
4/15/2013	1092	ZINC	<	0	5000	50	5000	UG/L
4/15/2013	1097	ANTIMONY	<	0	6	6	6	UG/L
4/15/2013	1105	ALUMINUM	<	0	1000	50	200	UG/L
4/15/2013	1147	SELENIUM	<	0	50	5	50	UG/L
4/13/2013	114/	SELETION			30	3	30	OG/L
4/15/2013	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L
4/15/2013	71850	NITRATE (AS NO3)		3.4	45	2	23	MG/L
4/15/2013	71900	MERCURY	<	0	2	1	2	UG/L
4/15/2013	82079	TURBIDITY, LABORATORY		0.07	5	0.1	5	NTU
4/15/2013	A-029	NITRATE + NITRITE (AS N)		780	10	0.4	5	mg/L
2/4/2013	1045	IRON	<	0	300	100	300	UG/L
2/4/2013	1055	MANGANESE	<	0	50	20	50	UG/L
11/15/2012	1045	IRON	<	0	300	100	300	UG/L
11/15/2012	1055	MANGANESE	<	0	50	20	50	UG/L
8/6/2012	1045	IRON	<	0	300	100	300	UG/L
8/6/2012	1055	MANGANESE	<	0	50	20	50	UG/L
7/6/2012	11501	RADIUM 228	<	0	0	1	0	
7/6/2012	11502	RADIUM 228 COUNTING ERROR		0.516	0	0	0	PCI/L
7/6/2012	A-075	RADIUM 228 MDA95		0.201	1	0	0	PCI/L
5/14/2012	1045	IRON	<	0	300	100	300	UG/L
5/14/2012	1055	MANGANESE	<	0	50	20	50	UG/L
4/16/2012	11501	RADIUM 228	<	0	0	1	0	
4/16/2012	11502	RADIUM 228 COUNTING ERROR		0.516	0	0	0	PCI/L
4/16/2012	71850	NITRATE (AS NO3)		7	45	2	23	MG/L
4/16/2012	A-075	RADIUM 228 MDA95		0.201	1	0	0	PCI/L
2/10/2012	1045	IRON	<	0	300	100	300	UG/L
2/10/2012	1055	MANGANESE	<	0	50	20	50	UG/L
1/11/2012	11501	RADIUM 228	<	0	0	1	0	COL
1/11/2012	11502	RADIUM 228 COUNTING ERROR	Ì	0.516	0	0	0	PCI/L
1/11/2012	A-075	RADIUM 228 MDA95		0.201	1	0	0	PCI/L
11/28/2011	1045	IRON	<	0.201	300	100	300	UG/L

11/28/2011	1055	MANGANESE	<	0	50	20	50	UG/L
10/6/2011	11501	RADIUM 228	<	0	0	1	0	
10/6/2011	11502	RADIUM 228 COUNTING ERROR		0.516	0	0	0	PCI/L
10/6/2011	A-075	RADIUM 228 MDA95		0.201	1	0	0	PCI/L
8/10/2011	1045	IRON	<	0	300	100	300	UG/L
8/10/2011	1055	MANGANESE	<	0	50	20	50	UG/L
5/9/2011	1045	IRON		120	300	100	300	UG/L
5/9/2011	1055	MANGANESE	<	0	50	20	50	UG/L
4/11/2011	71850	NITRATE (AS NO3)		7.8	45	2	23	MG/L
2/10/2011	1045	IRON	<	0	300	100	300	UG/L
2/10/2011	1055	MANGANESE	<	0	50	20	50	UG/L
11/22/2010	403	PH, LABORATORY		7.1	0	0	0	
11/22/2010	410	ALKALINITY (TOTAL) AS CACO3		120	0	0	0	MG/L
11/22/2010	916	CALCIUM		48	0	0	0	MG/L
11/22/2010	70300	TOTAL DISSOLVED SOLIDS		230	1000	0	500	MG/L
11/22/2010	71814	LANGELIER INDEX AT SOURCE TEMP.		-0.52	0	0	0	
11/22/2010	A-031	PERCHLORATE	<	4	6	4	4	UG/L
11/8/2010	1045	IRON	<	0	300	100	300	UG/L
11/8/2010	1055	MANGANESE	<	0	50	20	50	UG/L
9/13/2010	1045	IRON		150	300	100	300	UG/L
9/13/2010	1055	MANGANESE	<	0	50	20	50	UG/L
8/16/2010	1045	IRON		650	300	100	300	UG/L
8/16/2010	1055	MANGANESE		40	50	20	50	UG/L
4/20/2010	81	COLOR	<	3	15	0	15	UNITS
4/20/2010	86	ODOR THRESHOLD @ 60 C	<	0	3	1	3	TON
4/20/2010	95	SPECIFIC CONDUCTANCE		290	1600	0	900	US
4/20/2010	95	SPECIFIC CONDUCTANCE		290	1600	0	900	US
4/20/2010	403	PH, LABORATORY		7	0	0	0	
4/20/2010	410	ALKALINITY (TOTAL) AS CACO3		110	0	0	0	MG/L
4/20/2010	440	BICARBONATE ALKALINITY		110	0	0	0	MG/L
4/20/2010	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
4/20/2010	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
4/20/2010	900	HARDNESS (TOTAL) AS CACO3		110	0	0	0	MG/L
4/20/2010	916	CALCIUM		33	0	0	0	MG/L
4/20/2010	927	MAGNESIUM		5.9	0	0	0	MG/L
4/20/2010	929	SODIUM		10	0	0	0	MG/L

4/20/2010	937	POTASSIUM	<	2	0	0	0	MG/L
4/20/2010	940	CHLORIDE		7.9	500	0	250	MG/L
4/20/2010	945	SULFATE		11	500	0.5	250	MG/L
4/20/2010	951	FLUORIDE (F) (NATURAL- SOURCE)	<	0	2	0.1	2	MG/L
4/20/2010	1002	ARSENIC	<	0	10	2	5	UG/L
4/20/2010	1007	BARIUM	<	0	1000	100	1000	UG/L
4/20/2010	1012	BERYLLIUM	<	0	4	1	4	UG/L
4/20/2010	1027	CADMIUM	<	0	5	1	5	UG/L
4/20/2010	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
4/20/2010	1042	COPPER	<	0	1000	50	1000	UG/L
4/20/2010	1045	IRON	<	0	300	100	300	UG/L
4/20/2010	1055	MANGANESE	<	0	50	20	50	UG/L
4/20/2010	1059	THALLIUM	<	0	2	1	2	UG/L
4/20/2010	1067	NICKEL	<	0	100	10	100	UG/L
4/20/2010	1077	SILVER	<	0	100	10	100	UG/L
4/20/2010	1092	ZINC	<	0	5000	50	5000	UG/L
4/20/2010	1097	ANTIMONY	<	0	6	6	6	UG/L
4/20/2010	1105	ALUMINUM	<	0	1000	50	200	UG/L
4/20/2010	1147	SELENIUM	<	0	50	5	50	UG/L
4/20/2010	1501	GROSS ALPHA	<	0	15	3	5	PCI/L
4/20/2010	1502	GROSS ALPHA COUNTING ERROR		0.16	0	0	0	PCI/L
4/20/2010	32101	BROMODICHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
4/20/2010	32102	CARBON TETRACHLORIDE	<	0	0.5	0.5	0.5	UG/L
4/20/2010	32104	BROMOFORM (THM)	<	0	0	1	0	UG/L
4/20/2010	32105	DIBROMOCHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
4/20/2010	32106	CHLOROFORM (THM)	<	0	0	1	0	UG/L
4/20/2010	34010	TOLUENE	<	0	150	0.5	0.5	UG/L
4/20/2010	34030	BENZENE	<	0	1	0.5	0.5	UG/L
4/20/2010	34301	MONOCHLOROBENZENE	<	0	70	0.5	0.5	UG/L
4/20/2010	34311	CHLOROETHANE	<	0	0	0.5	0.5	UG/L
4/20/2010	34371	ETHYLBENZENE	<	0	300	0.5	0.5	UG/L
4/20/2010	34391	HEXACHLOROBUTADIENE	<	0	0	0.5	0.5	UG/L
4/20/2010	34413	BROMOMETHANE	<	0	0	0.5	0.5	UG/L
4/20/2010	34418	CHLOROMETHANE	<	0	0	0.5	0.5	UG/L
4/20/2010	34423	DICHLOROMETHANE	<	0	5	0.5	0.5	UG/L
4/20/2010	34475	TETRACHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
4/20/2010	34488	TRICHLOROFLUOROMETH ANE	<	0	150	5	5	UG/L
4/20/2010	34496	1,1-DICHLOROETHANE	<	0	5	0.5	0.5	UG/L

4/20/2010	34501	1,1-DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
4/20/2010	34506	1,1,1-TRICHLOROETHANE	<	0	200	0.5	0.5	UG/L
4/20/2010	34511	1,1,2-TRICHLOROETHANE	<	0	5	0.5	0.5	UG/L
4/20/2010	34516	1,1,2,2- TETRACHLOROETHANE	<	0	1	0.5	0.5	UG/L
4/20/2010	34531	1,2-DICHLOROETHANE	<	0	0.5	0.5	0.5	UG/L
4/20/2010	34536	1,2-DICHLOROBENZENE	<	0	600	0.5	0.5	UG/L
4/20/2010	34541	1,2-DICHLOROPROPANE	<	0	5	0.5	0.5	UG/L
4/20/2010	34546	TRANS-1,2- DICHLOROETHYLENE	<	0	10	0.5	0.5	UG/L
4/20/2010	34551	1,2,4-TRICHLOROBENZENE	<	0	5	0.5	5	UG/L
4/20/2010	34561	1,3-DICHLOROPROPENE (TOTAL)	<	0	0.5	0.5	0.5	UG/L
4/20/2010	34566	1,3-DICHLOROBENZENE	<	0	0	0.5	600	UG/L
4/20/2010	34571	1,4-DICHLOROBENZENE	<	0	5	0.5	0.5	UG/L
4/20/2010	34668	DICHLORODIFLUOROMETH ANE (FREON 12)	<	0	1000	0.5	1000	UG/L
4/20/2010	34696	NAPHTHALENE	<	0	170	0.5	170	UG/L
4/20/2010	34699	TRANS-1,3- DICHLOROPROPENE	<	0.5	0.5	0.5	0	UG/L
4/20/2010	34704	CIS-1,3-DICHLOROPROPENE	<	0.5	0.5	0.5	0.5	UG/L
4/20/2010	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L
4/20/2010	38761	DIBROMOCHLOROPROPAN E (DBCP)	<	2	0.2	0.01	0.01	UG/L
4/20/2010	39175	VINYL CHLORIDE	<	0	0.5	0.5	0.5	UG/L
4/20/2010	39180	TRICHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
4/20/2010	46491	METHYL-TERT-BUTYL- ETHER (MTBE)	<	0	13	3	3	UG/L
4/20/2010	70300	TOTAL DISSOLVED SOLIDS		180	1000	0	500	MG/L
4/20/2010	71814	LANGELIER INDEX AT SOURCE TEMP.	<	0	0	0	0	
4/20/2010	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
4/20/2010	71850	NITRATE (AS NO3)		7.6	45	2	23	MG/L
4/20/2010	71900	MERCURY	<	0	2	1	2	UG/L
4/20/2010	77035	TERT-BUTYL ALCOHOL (TBA)	<	15	12	2	12	UG/L
4/20/2010	77093	CIS-1,2- DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
4/20/2010	77128	STYRENE	<	0	100	0.5	0.5	UG/L

4/20/2010	77135	O-XYLENE	<	0	0	0.5	0	UG/L
4/20/2010	77168	1,1-DICHLOROPROPENE	<	0	0	0.5	0.5	UG/L
4/20/2010	77170	2,2-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
4/20/2010	77173	1,3-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
4/20/2010	77222	1,2,4-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
4/20/2010	77223	ISOPROPYLBENZENE	<	0	770	0.5	770	UG/L
4/20/2010	77224	N-PROPYLBENZENE	<	0	260	0.5	260	UG/L
4/20/2010	77226	1,3,5-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
4/20/2010	77350	SEC-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
4/20/2010	77353	TERT-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
4/20/2010	77443	1,2,3-TRICHLOROPROPANE (1,2,3,-TCP)	<	0.5	0.005	0.005	0.005	UG/L
4/20/2010	77562	1,1,1,2- TETRACHLOROETHANE	<	0	0	0.5	0.5	UG/L
4/20/2010	77596	DIBROMOMETHANE	<	0	0	0.5	0.5	UG/L
4/20/2010	77613	1,2,3-TRICHLOROBENZENE	<	0	0	0.5	0.5	UG/L
4/20/2010	77651	ETHYLENE DIBROMIDE (EDB)	<	0.5	0.05	0.02	0.02	UG/L
4/20/2010	81551	XYLENES (TOTAL)	<	0	1750	0	1750	UG/L
4/20/2010	81555	BROMOBENZENE	<	0	0	0.5	0.5	UG/L
4/20/2010	81611	TRICHLOROTRIFLUOROET HANE (FREON 113)	<	0	1200	10	10	UG/L
4/20/2010	82079	TURBIDITY, LABORATORY		0.63	5	0.1	5	NTU
4/20/2010	82080	TOTAL TRIHALOMETHANES	<	0	80	0	80	UG/L
4/20/2010	A-008	2-CHLOROTOLUENE	<	0	140	0.5	0.5	UG/L
4/20/2010	A-009	4-CHLOROTOLUENE	<	0	140	0.5	140	UG/L
4/20/2010	A-010	N-BUTYLBENZENE	<	0	260	0.5	70	UG/L
4/20/2010	A-011	P-ISOPROPYLTOLUENE	<	0.5	0	0	0	UG/L
4/20/2010	A-012	BROMOCHLOROMETHANE	<	0	0	0.5	0.5	UG/L
4/20/2010	A-014	M,P-XYLENE	<	0	0	0.5	0	UG/L
4/20/2010	A-029	NITRATE + NITRITE (AS N)		1700	10	0.4	5	mg/L
4/20/2010	A-031	PERCHLORATE	<	0	6	4	4	UG/L
4/20/2010	A-033	ETHYL-TERT-BUTYL ETHER	<	0	0	3	0	UG/L
4/20/2010	A-034	TERT-AMYL-METHYL ETHER	<	0	0	3	0	UG/L
4/20/2010	A-036	DIISOPROPYL ETHER	<	0	0	3	0	UG/L
2/22/2010	1045	IRON		250	300	100	300	UG/L
2/22/2010	1055	MANGANESE	<	0	50	20	50	UG/L

12/7/2009	1045	IRON	<	0	300	100	300	UG/L
12/7/2009	1055	MANGANESE	<	0	50	20	50	UG/L
9/14/2009	1045	IRON	<	0	300	100	300	UG/L
9/14/2009	1055	MANGANESE	<	0	50	20	50	UG/L

		Jerry Well - Raw	(121002	22-009)				
Sampling Date	Storet Number	Group/Constituent Identification	XMOD	Result	MCL	DLR	Trigger	Unit
4/7/2015	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
3/9/2015	82079	TURBIDITY, LABORATORY		1.4	5	0.1	5	NTU
10/28/2014	1032	CHROMIUM, HEXAVALENT		1.9	10	1	10	UG/L
4/7/2014	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
11/5/2013	95	SPECIFIC CONDUCTANCE		72	1600	0	900	US
11/5/2013	403	PH, LABORATORY		5.9	0	0	0	
11/5/2013	410	ALKALINITY (TOTAL) AS CACO3		32	0	0	0	MG/L
11/5/2013	916	CALCIUM		2.1	0	0	0	MG/L
11/5/2013	70300	TOTAL DISSOLVED SOLIDS		67	1000	0	500	MG/L
11/5/2013	71814	LANGELIER INDEX AT SOURCE TEMP.	-	3.6	0	0	0	
11/5/2013	A-031	PERCHLORATE	<	0	6	4	4	UG/L
5/7/2013	1045	IRON	<	0	300	100	300	UG/L
5/7/2013	1055	MANGANESE	<	0	50	20	50	UG/L
4/8/2013	81	COLOR	<	3	15	0	15	UNITS
4/8/2013	86	ODOR THRESHOLD @ 60 C		1	3	1	3	TON
4/8/2013	95	SPECIFIC CONDUCTANCE		65	1600	0	900	US
4/8/2013	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
4/8/2013	940	CHLORIDE		8.2	500	0	250	MG/L
4/8/2013	945	SULFATE		4.8	500	0.5	250	MG/L
4/8/2013	951	FLUORIDE (F) (NATURAL- SOURCE)	<	0	2	0.1	2	MG/L
4/8/2013	1002	ARSENIC	<	0	10	2	5	UG/L
4/8/2013	1007	BARIUM	<	0	1000	100	1000	UG/L
4/8/2013	1012	BERYLLIUM	<	0	4	1	4	UG/L
4/8/2013	1027	CADMIUM	<	0	5	1	5	UG/L
4/8/2013	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
4/8/2013	1042	COPPER	<	0	1000	50	1000	UG/L
4/8/2013	1059	THALLIUM	<	0	2	1	2	UG/L

4/8/2013	1067	NICKEL	<	0	100	10	100	UG/L
4/8/2013	1077	SILVER	<	0	100	10	100	UG/L
4/8/2013	1092	ZINC	<	0	5000	50	5000	UG/L
4/8/2013	1097	ANTIMONY	<	0	6	6	6	UG/L
4/8/2013	1105	ALUMINUM	<	0	1000	50	200	UG/L
4/8/2013	1147	SELENIUM	<	0	50	5	50	UG/L
4/8/2013	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L
4/8/2013	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
4/8/2013	71900	MERCURY	<	0	2	1	2	UG/L
4/8/2013	A-029	NITRATE + NITRITE (AS N)	<	0	10	0.4	5	mg/L
2/6/2013	1045	IRON	<	0	300	100	300	UG/L
2/6/2013	1055	MANGANESE	<	0	50	20	50	UG/L
11/9/2012	1045	IRON	<	0	300	100	300	UG/L
11/9/2012	1055	MANGANESE	<	0	50	20	50	UG/L
8/3/2012	1045	IRON	<	0	300	100	300	UG/L
8/3/2012	1055	MANGANESE	<	0	50	20	50	UG/L
7/5/2012	11501	RADIUM 228		0.221	0	1	0	
7/5/2012	11502	RADIUM 228 COUNTING ERROR		0.697	0	0	0	PCI/L
7/5/2012	A-075	RADIUM 228 MDA95		0.203	1	0	0	PCI/L
5/15/2012	1045	IRON	<	0	300	100	300	UG/L
5/15/2012	1055	MANGANESE	<	0	50	20	50	UG/L
4/9/2012	11501	RADIUM 228		0.221	0	1	0	
4/9/2012	11502	RADIUM 228 COUNTING ERROR		0.697	0	0	0	PCI/L
4/9/2012	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
4/9/2012	A-075	RADIUM 228 MDA95		0.203	1	0	0	PCI/L
3/5/2012	81	COLOR	<	3	15	0	15	UNITS
3/5/2012	82079	TURBIDITY, LABORATORY		0.63	5	0.1	5	NTU
2/13/2012	1045	IRON	<	0	300	100	300	UG/L
2/13/2012	1055	MANGANESE	<	0	50	20	50	UG/L
1/9/2012	11501	RADIUM 228		0.221	0	1	0	
1/9/2012	11502	RADIUM 228 COUNTING ERROR		0.697	0	0	0	PCI/L
1/9/2012	A-075	RADIUM 228 MDA95		0.203	1	0	0	PCI/L
11/28/2011	1045	IRON		280	300	100	300	UG/L
11/28/2011	1055	MANGANESE		32	50	20	50	UG/L
10/6/2011	11501	RADIUM 228		0.221	0	1	0	
10/6/2011	11502	RADIUM 228 COUNTING ERROR		0.697	0	0	0	PCI/L
10/6/2011	A-075	RADIUM 228 MDA95		0.203	1	0	0	PCI/L
8/9/2011	1045	IRON	<	0	300	100	300	UG/L
8/9/2011	1055	MANGANESE	<	0	50	20	50	UG/L
6/23/2011	1045	IRON	<	0	300	100	300	UG/L

6/23/2011	1055	MANGANESE	<	Ι 0	50	20	50	UG/L
5/9/2011	1035	IRON		630	300	100	300	UG/L
5/9/2011	1055	MANGANESE		26	50	20	50	UG/L
4/11/2011	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
2/10/2011	1045	IRON		220	300	100	300	UG/L
2/10/2011	1055	MANGANESE		21	50	20	50	UG/L
11/22/2010	403	PH, LABORATORY		5.6	0	0	0	CG/E
		ALKALINITY (TOTAL) AS						
11/22/2010	410	CACO3		21	0	0	0	MG/L
11/22/2010	916	CALCIUM		2.4	0	0	0	MG/L
11/22/2010	70300	TOTAL DISSOLVED SOLIDS		80	1000	0	500	MG/L
11/22/2010	71814	LANGELIER INDEX AT SOURCE TEMP.		-4.1	0	0	0	
11/22/2010	A-031	PERCHLORATE	<	4	6	4	4	UG/L
11/8/2010	1045	IRON	<	0	300	100	300	UG/L
11/8/2010	1055	MANGANESE	<	0	50	20	50	UG/L
9/13/2010	1045	IRON		1300	300	100	300	UG/L
9/13/2010	1055	MANGANESE		180	50	20	50	UG/L
8/16/2010	1045	IRON		1600	300	100	300	UG/L
8/16/2010	1055	MANGANESE		120	50	20	50	UG/L
4/20/2010	86	ODOR THRESHOLD @ 60 C	<	0	3	1	3	TON
4/20/2010	95	SPECIFIC CONDUCTANCE		67	1600	0	900	US
4/20/2010	95	SPECIFIC CONDUCTANCE		70	1600	0	900	US
4/20/2010	403	PH, LABORATORY		5.8	0	0	0	
4/20/2010	410	ALKALINITY (TOTAL) AS CACO3		22	0	0	0	MG/L
4/20/2010	440	BICARBONATE ALKALINITY		22	0	0	0	MG/L
4/20/2010	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
4/20/2010	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
4/20/2010	900	HARDNESS (TOTAL) AS CACO3		8.3	0	0	0	MG/L
4/20/2010	916	CALCIUM		1.5	0	0	0	MG/L
4/20/2010	927	MAGNESIUM		1.1	0	0	0	MG/L
4/20/2010	929	SODIUM		8.9	0	0	0	MG/L
4/20/2010	937	POTASSIUM	<	2	0	0	0	MG/L
4/20/2010	940	CHLORIDE		8.2	500	0	250	MG/L
4/20/2010	945	SULFATE		3.4	500	0.5	250	MG/L
4/20/2010	951	FLUORIDE (F) (NATURAL- SOURCE)	<	0	2	0.1	2	MG/L
4/20/2010	1002	ARSENIC	<	0	10	2	5	UG/L
4/20/2010	1007	BARIUM	<	0	1000	100	1000	UG/L

4/20/2010	1012	BERYLLIUM	<	0	4	1	I 4	UG/L
4/20/2010	1012	CADMIUM	<	0	5	1	5	UG/L
4/20/2010	1027	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
4/20/2010	1042	COPPER	<	0	1000	50	1000	UG/L
4/20/2010	1042	IRON		150	300	100	300	UG/L
4/20/2010	1045	MANGANESE	<	0	50	20	50	UG/L
4/20/2010	1059	THALLIUM	<	0	2	1	2	UG/L
4/20/2010	1039	NICKEL	<	0	100	10	100	UG/L
4/20/2010	1007	SILVER	<	0	100	10	100	UG/L UG/L
4/20/2010	1077	ZINC		0	5000	50	5000	UG/L UG/L
4/20/2010	1092	ANTIMONY	<	0	6	6	6	UG/L UG/L
			<	120		50	200	
4/20/2010	1105	ALUMINUM		-	1000		-	UG/L
4/20/2010	1147	SELENIUM CROSS AL PILA	<	0	50	5	50	UG/L
4/20/2010	1501	GROSS ALPHA	<	0	15	3	5	PCI/L
4/20/2010	1502	GROSS ALPHA COUNTING ERROR		0.16	0	0	0	PCI/L
4/20/2010	32101	BROMODICHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
4/20/2010	32102	CARBON TETRACHLORIDE	<	0	0.5	0.5	0.5	UG/L
4/20/2010	32104	BROMOFORM (THM)	<	0	0	1	0	UG/L
4/20/2010	32105	DIBROMOCHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
4/20/2010	32106	CHLOROFORM (THM)		11	0	1	0	UG/L
4/20/2010	34010	TOLUENE	<	0	150	0.5	0.5	UG/L
4/20/2010	34030	BENZENE	<	0	1	0.5	0.5	UG/L
4/20/2010	34301	MONOCHLOROBENZENE	<	0	70	0.5	0.5	UG/L
4/20/2010	34311	CHLOROETHANE	<	0	0	0.5	0.5	UG/L
4/20/2010	34371	ETHYLBENZENE	<	0	300	0.5	0.5	UG/L
4/20/2010	34391	HEXACHLOROBUTADIENE	<	0	0	0.5	0.5	UG/L
4/20/2010	34413	BROMOMETHANE	<	0	0	0.5	0.5	UG/L
4/20/2010	34418	CHLOROMETHANE	<	0	0	0.5	0.5	UG/L
4/20/2010	34423	DICHLOROMETHANE	<	0	5	0.5	0.5	UG/L
4/20/2010	34475	TETRACHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
4/20/2010	34488	TRICHLOROFLUOROMETH ANE	<	0	150	5	5	UG/L
4/20/2010	34496	1,1-DICHLOROETHANE	<	0	5	0.5	0.5	UG/L
4/20/2010	34501	1,1-DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
4/20/2010	34506	1,1,1-TRICHLOROETHANE	<	0	200	0.5	0.5	UG/L
4/20/2010	34511	1,1,2-TRICHLOROETHANE	<	0	5	0.5	0.5	UG/L

		1122						
4/20/2010	34516	1,1,2,2- TETRACHLOROETHANE	<	0	1	0.5	0.5	UG/L
4/20/2010	34531	1,2-DICHLOROETHANE	<	0	0.5	0.5	0.5	UG/L
4/20/2010	34536	1,2-DICHLOROBENZENE	<	0	600	0.5	0.5	UG/L
4/20/2010	34541	1,2-DICHLOROPROPANE	<	0	5	0.5	0.5	UG/L
4/20/2010	34546	TRANS-1,2- DICHLOROETHYLENE	<	0	10	0.5	0.5	UG/L
4/20/2010	34551	1,2,4-TRICHLOROBENZENE	<	0	5	0.5	5	UG/L
4/20/2010	34561	1,3-DICHLOROPROPENE (TOTAL)	<	0	0.5	0.5	0.5	UG/L
4/20/2010	34566	1,3-DICHLOROBENZENE	<	0	0	0.5	600	UG/L
4/20/2010	34571	1,4-DICHLOROBENZENE	<	0	5	0.5	0.5	UG/L
4/20/2010	34668	DICHLORODIFLUOROMETH ANE (FREON 12)	<	0	1000	0.5	1000	UG/L
4/20/2010	34696	NAPHTHALENE	<	0	170	0.5	170	UG/L
4/20/2010	34699	TRANS-1,3- DICHLOROPROPENE	<	0.5	0.5	0.5	0	UG/L
4/20/2010	34704	CIS-1,3-DICHLOROPROPENE	<	0.5	0.5	0.5	0.5	UG/L
4/20/2010	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L
4/20/2010	38761	DIBROMOCHLOROPROPAN E (DBCP)	<	2	0.2	0.01	0.01	UG/L
4/20/2010	39175	VINYL CHLORIDE	<	0	0.5	0.5	0.5	UG/L
4/20/2010	39180	TRICHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
4/20/2010	46491	METHYL-TERT-BUTYL- ETHER (MTBE)	<	0	13	3	3	UG/L
4/20/2010	70300	TOTAL DISSOLVED SOLIDS		57	1000	0	500	MG/L
4/20/2010	71814	LANGELIER INDEX AT SOURCE TEMP.	<	0	0	0	0	
4/20/2010	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
4/20/2010	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
4/20/2010	71900	MERCURY	<	0	2	1	2	UG/L
4/20/2010	77035	TERT-BUTYL ALCOHOL (TBA)	<	15	12	2	12	UG/L
4/20/2010	77093	CIS-1,2- DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
4/20/2010	77128	STYRENE	<	0	100	0.5	0.5	UG/L
4/20/2010	77135	O-XYLENE	<	0	0	0.5	0	UG/L
4/20/2010	77168	1,1-DICHLOROPROPENE	<	0	0	0.5	0.5	UG/L
4/20/2010	77170	2,2-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
4/20/2010	77173	1,3-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
4/20/2010	77222	1,2,4-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L

4/20/2010	77223	ISOPROPYLBENZENE	<	0	770	0.5	770	UG/L
4/20/2010	77224	N-PROPYLBENZENE	<	0	260	0.5	260	UG/L
4/20/2010	77226	1,3,5-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
4/20/2010	77350	SEC-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
4/20/2010	77353	TERT-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
4/20/2010	77443	1,2,3-TRICHLOROPROPANE (1,2,3,-TCP)	<	0.5	0.005	0.005	0.005	UG/L
4/20/2010	77562	1,1,1,2- TETRACHLOROETHANE	<	0	0	0.5	0.5	UG/L
4/20/2010	77596	DIBROMOMETHANE	<	0	0	0.5	0.5	UG/L
4/20/2010	77613	1,2,3-TRICHLOROBENZENE	<	0	0	0.5	0.5	UG/L
4/20/2010	77651	ETHYLENE DIBROMIDE (EDB)	<	0.5	0.05	0.02	0.02	UG/L
4/20/2010	81551	XYLENES (TOTAL)	<	0	1750	0	1750	UG/L
4/20/2010	81555	BROMOBENZENE	<	0	0	0.5	0.5	UG/L
4/20/2010	81611	TRICHLOROTRIFLUOROET HANE (FREON 113)	<	0	1200	10	10	UG/L
4/20/2010	82080	TOTAL TRIHALOMETHANES		11	80	0	80	UG/L
4/20/2010	A-008	2-CHLOROTOLUENE	<	0	140	0.5	0.5	UG/L
4/20/2010	A-009	4-CHLOROTOLUENE	<	0	140	0.5	140	UG/L
4/20/2010	A-010	N-BUTYLBENZENE	<	0	260	0.5	70	UG/L
4/20/2010	A-011	P-ISOPROPYLTOLUENE	<	0.5	0	0	0	UG/L
4/20/2010	A-012	BROMOCHLOROMETHANE	<	0	0	0.5	0.5	UG/L
4/20/2010	A-014	M,P-XYLENE	<	0	0	0.5	0	UG/L
4/20/2010	A-029	NITRATE + NITRITE (AS N)	<	0	10	0.4	5	mg/L
4/20/2010	A-031	PERCHLORATE	<	0	6	4	4	UG/L
4/20/2010	A-033	ETHYL-TERT-BUTYL ETHER	<	0	0	3	0	UG/L
4/20/2010	A-034	TERT-AMYL-METHYL ETHER	<	0	0	3	0	UG/L
4/20/2010	A-036	DIISOPROPYL ETHER	<	0	0	3	0	UG/L
2/22/2010	1045	IRON		240	300	100	300	UG/L
2/22/2010	1055	MANGANESE	<	0	50	20	50	UG/L
12/7/2009	1045	IRON		130	300	100	300	UG/L
12/7/2009	1055	MANGANESE	<	0	50	20	50	UG/L
9/14/2009	1045	IRON		1500	300	100	300	UG/L
9/14/2009	1055	MANGANESE		140	50	20	50	UG/L
3/10/2009	81	COLOR		5	15	0	15	UNITS
3/10/2009	1045	IRON		1100	300	100	300	UG/L
3/10/2009	1055	MANGANESE		67	50	20	50	UG/L
3/10/2009	1105	ALUMINUM		710	1000	50	200	UG/L

	3/10/2009	82079	TURBIDITY, LABORATORY		18	5	0.1	5	NTU
--	-----------	-------	-----------------------	--	----	---	-----	---	-----

		Jack Well - Raw	(121002	2-010)				
Sampling Date	Storet Number	Group/Constituent Identification	XMOD	Result	MCL	DLR	Trigger	Unit
4/7/2015	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
10/28/2014	1032	CHROMIUM, HEXAVALENT	<	0	10	1	10	UG/L
4/14/2014	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
11/12/2013	403	PH, LABORATORY		7.6	0	0	0	
11/12/2013	410	ALKALINITY (TOTAL) AS CACO3		120	0	0	0	MG/L
11/12/2013	916	CALCIUM		50	0	0	0	MG/L
11/12/2013	70300	TOTAL DISSOLVED SOLIDS		210	1000	0	500	MG/L
11/12/2013	71814	LANGELIER INDEX AT SOURCE TEMP.	-	0.008	0	0	0	
5/13/2013	1045	IRON	<	0	300	100	300	UG/L
5/13/2013	1055	MANGANESE	<	0	50	20	50	UG/L
4/8/2013	81	COLOR	<	3	15	0	15	UNITS
4/8/2013	86	ODOR THRESHOLD @ 60 C		1	3	1	3	TON
4/8/2013	95	SPECIFIC CONDUCTANCE		320	1600	0	900	US
4/8/2013	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
4/8/2013	940	CHLORIDE		5.7	500	0	250	MG/L
4/8/2013	945	SULFATE		45	500	0.5	250	MG/L
4/8/2013	951	FLUORIDE (F) (NATURAL- SOURCE)		0.22	2	0.1	2	MG/L
4/8/2013	1002	ARSENIC		2.9	10	2	5	UG/L
4/8/2013	1007	BARIUM	<	0	1000	100	1000	UG/L
4/8/2013	1012	BERYLLIUM	<	0	4	1	4	UG/L
4/8/2013	1027	CADMIUM	<	0	5	1	5	UG/L
4/8/2013	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
4/8/2013	1042	COPPER	<	0	1000	50	1000	UG/L
4/8/2013	1059	THALLIUM	<	0	2	1	2	UG/L
4/8/2013	1067	NICKEL	<	0	100	10	100	UG/L
4/8/2013	1077	SILVER	<	0	100	10	100	UG/L
4/8/2013	1092	ZINC	<	0	5000	50	5000	UG/L
4/8/2013	1097	ANTIMONY	<	0	6	6	6	UG/L
4/8/2013	1105	ALUMINUM	<	0	1000	50	200	UG/L
4/8/2013	1147	SELENIUM	<	0	50	5	50	UG/L

							I	1
4/8/2013	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L
4/8/2013	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
4/8/2013	71900	MERCURY	<	0	2	1	2	UG/L
4/8/2013	82079	TURBIDITY, LABORATORY		0.3	5	0.1	5	NTU
4/8/2013	A-029	NITRATE + NITRITE (AS N)	<	0	10	0.4	5	mg/L
4/8/2013	A-031	PERCHLORATE	<	0	6	4	4	UG/L
2/7/2013	1045	IRON	<	0	300	100	300	UG/L
2/7/2013	1055	MANGANESE	<	0	50	20	50	UG/L
11/7/2012	1045	IRON	<	0	300	100	300	UG/L
11/7/2012	1055	MANGANESE		22	50	20	50	UG/L
8/6/2012	1045	IRON	<	0	300	100	300	UG/L
8/6/2012	1055	MANGANESE	<	0	50	20	50	UG/L
5/18/2012	1045	IRON	<	0	300	100	300	UG/L
5/18/2012	1055	MANGANESE	<	0	50	20	50	UG/L
4/9/2012	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
2/13/2012	1045	IRON	<	0	300	100	300	UG/L
2/13/2012	1055	MANGANESE	<	0	50	20	50	UG/L
11/28/2011	1045	IRON	<	0	300	100	300	UG/L
11/28/2011	1055	MANGANESE	<	0	50	20	50	UG/L
8/15/2011	1045	IRON	<	0	300	100	300	UG/L
8/15/2011	1055	MANGANESE	<	0	50	20	50	UG/L
5/9/2011	1045	IRON	<	0	300	100	300	UG/L
5/9/2011	1055	MANGANESE	<	0	50	20	50	UG/L
4/11/2011	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
2/10/2011	1045	IRON	<	0	300	100	300	UG/L
2/10/2011	1055	MANGANESE	<	0	50	20	50	UG/L
11/22/2010	403	PH, LABORATORY		7.5	0	0	0	OG/L
11/22/2010	+03	ALKALINITY (TOTAL) AS		1.5	0	0	0	
11/22/2010	410	CACO3		110	0	0	0	MG/L
11/22/2010	916	CALCIUM		41	0	0	0	MG/L
11/22/2010	70300			200	1000	0	500	MG/L
11/22/2010	/0300	TOTAL DISSOLVED SOLIDS		200	1000		300	MG/L
11/22/2010	71814	LANGELIER INDEX AT SOURCE TEMP.		-0.27	0	0	0	
11/8/2010	1045	IRON	<	0	300	100	300	UG/L
11/8/2010	1055	MANGANESE		21	50	20	50	UG/L
9/13/2010	1045	IRON		110	300	100	300	UG/L
9/13/2010	1055	MANGANESE		22	50	20	50	UG/L
8/16/2010	1045	IRON	<	0	300	100	300	UG/L
8/16/2010	1055	MANGANESE	<	0	50	20	50	UG/L
4/13/2010	81	COLOR		3	15	0	15	UNITS
4/13/2010	86	ODOR THRESHOLD @ 60 C		2	3	1	3	TON

4/13/2010	95	SPECIFIC CONDUCTANCE		180	1600	0	900	US
4/13/2010	95	SPECIFIC CONDUCTANCE		190	1600	0	900	US
4/13/2010	403	PH, LABORATORY		6.8	0	0	0	
4/13/2010	410	ALKALINITY (TOTAL) AS CACO3		69	0	0	0	MG/L
4/13/2010	440	BICARBONATE ALKALINITY		69	0	0	0	MG/L
4/13/2010	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
4/13/2010	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
4/13/2010	900	HARDNESS (TOTAL) AS CACO3		76	0	0	0	MG/L
4/13/2010	916	CALCIUM		23	0	0	0	MG/L
4/13/2010	927	MAGNESIUM		4.7	0	0	0	MG/L
4/13/2010	929	SODIUM		8.5	0	0	0	MG/L
4/13/2010	937	POTASSIUM	<	2	0	0	0	MG/L
4/13/2010	940	CHLORIDE		5.1	500	0	250	MG/L
4/13/2010	945	SULFATE		8.6	500	0.5	250	MG/L
4/13/2010	951	FLUORIDE (F) (NATURAL- SOURCE)		0.12	2	0.1	2	MG/L
4/13/2010	1002	ARSENIC	<	0	10	2	5	UG/L
4/13/2010	1007	BARIUM	<	0	1000	100	1000	UG/L
4/13/2010	1012	BERYLLIUM	<	0	4	1	4	UG/L
4/13/2010	1027	CADMIUM	<	0	5	1	5	UG/L
4/13/2010	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
4/13/2010	1042	COPPER	<	0	1000	50	1000	UG/L
4/13/2010	1045	IRON	<	0	300	100	300	UG/L
4/13/2010	1051	LEAD	<	0	0	5	15	UG/L
4/13/2010	1055	MANGANESE	<	0	50	20	50	UG/L
4/13/2010	1059	THALLIUM	<	0	2	1	2	UG/L
4/13/2010	1067	NICKEL	<	0	100	10	100	UG/L
4/13/2010	1077	SILVER	<	0	100	10	100	UG/L
4/13/2010	1092	ZINC	<	0	5000	50	5000	UG/L
4/13/2010	1097	ANTIMONY	<	0	6	6	6	UG/L
4/13/2010	1105	ALUMINUM	<	0	1000	50	200	UG/L
4/13/2010	1147	SELENIUM	<	0	50	5	50	UG/L
4/13/2010	1501	GROSS ALPHA	<	0	15	3	5	PCI/L
4/13/2010	1502	GROSS ALPHA COUNTING ERROR		0.16	0	0	0	PCI/L
4/13/2010	32101	BROMODICHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
4/13/2010	32102	CARBON TETRACHLORIDE	<	0	0.5	0.5	0.5	UG/L
4/13/2010	32104	BROMOFORM (THM)	<	0	0	1	0	UG/L

4/13/2010	32105	DIBROMOCHLOROMETHAN	<	0	0	1		UG/L
		E (THM)						
4/13/2010	32106	CHLOROFORM (THM)	<	0	0	1	0	UG/L
4/13/2010	34010	TOLUENE	<	0	150	0.5	0.5	UG/L
4/13/2010	34030	BENZENE	<	0	1	0.5	0.5	UG/L
4/13/2010	34301	MONOCHLOROBENZENE	<	0	70	0.5	0.5	UG/L
4/13/2010	34311	CHLOROETHANE	<	0	0	0.5	0.5	UG/L
4/13/2010	34371	ETHYLBENZENE	<	0	300	0.5	0.5	UG/L
4/13/2010	34391	HEXACHLOROBUTADIENE	<	0	0	0.5	0.5	UG/L
4/13/2010	34413	BROMOMETHANE	<	0	0	0.5	0.5	UG/L
4/13/2010	34418	CHLOROMETHANE	<	0	0	0.5	0.5	UG/L
4/13/2010	34423	DICHLOROMETHANE	<	0	5	0.5	0.5	UG/L
4/13/2010	34475	TETRACHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
4/13/2010	34488	TRICHLOROFLUOROMETH ANE	<	0	150	5	5	UG/L
4/13/2010	34496	1,1-DICHLOROETHANE	<	0	5	0.5	0.5	UG/L
4/13/2010	34501	1,1-DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
4/13/2010	34506	1,1,1-TRICHLOROETHANE	<	0	200	0.5	0.5	UG/L
4/13/2010	34511	1,1,2-TRICHLOROETHANE	<	0	5	0.5	0.5	UG/L
4/13/2010	34516	1,1,2,2- TETRACHLOROETHANE	<	0	1	0.5	0.5	UG/L
4/13/2010	34531	1,2-DICHLOROETHANE	<	0	0.5	0.5	0.5	UG/L
4/13/2010	34536	1,2-DICHLOROBENZENE	<	0	600	0.5	0.5	UG/L
4/13/2010	34541	1,2-DICHLOROPROPANE	<	0	5	0.5	0.5	UG/L
4/13/2010	34546	TRANS-1,2- DICHLOROETHYLENE	<	0	10	0.5	0.5	UG/L
4/13/2010	34551	1,2,4-TRICHLOROBENZENE	<	0	5	0.5	5	UG/L
4/13/2010	34561	1,3-DICHLOROPROPENE (TOTAL)	<	0	0.5	0.5	0.5	UG/L
4/13/2010	34566	1,3-DICHLOROBENZENE	<	0	0	0.5	600	UG/L
4/13/2010	34571	1,4-DICHLOROBENZENE	<	0	5	0.5	0.5	UG/L
4/13/2010	34668	DICHLORODIFLUOROMETH ANE (FREON 12)	<	0	1000	0.5	1000	UG/L
4/13/2010	34696	NAPHTHALENE	<	0	170	0.5	170	UG/L
4/13/2010	34699	TRANS-1,3- DICHLOROPROPENE	<	0.5	0.5	0.5	0	UG/L
4/13/2010	34704	CIS-1,3-DICHLOROPROPENE	<	0.5	0.5	0.5	0.5	UG/L
4/13/2010	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L

4/13/2010	38761	DIBROMOCHLOROPROPAN E (DBCP)	<	2	0.2	0.01	0.01	UG/L
4/13/2010	39175	VINYL CHLORIDE	<	0	0.5	0.5	0.5	UG/L
4/13/2010	39180	TRICHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
4/13/2010	46491	METHYL-TERT-BUTYL- ETHER (MTBE)	<	0	13	3	3	UG/L
4/13/2010	70300	TOTAL DISSOLVED SOLIDS		130	1000	0	500	MG/L
4/13/2010	71814	LANGELIER INDEX AT SOURCE TEMP.	<	0	0	0	0	
4/13/2010	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
4/13/2010	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
4/13/2010	71900	MERCURY	<	0	2	1	2	UG/L
4/13/2010	77035	TERT-BUTYL ALCOHOL (TBA)	<	15	12	2	12	UG/L
4/13/2010	77093	CIS-1,2- DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
4/13/2010	77128	STYRENE	<	0	100	0.5	0.5	UG/L
4/13/2010	77135	O-XYLENE	<	0	0	0.5	0	UG/L
4/13/2010	77168	1,1-DICHLOROPROPENE	<	0	0	0.5	0.5	UG/L
4/13/2010	77170	2,2-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
4/13/2010	77173	1,3-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
4/13/2010	77222	1,2,4-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
4/13/2010	77223	ISOPROPYLBENZENE	<	0	770	0.5	770	UG/L
4/13/2010	77224	N-PROPYLBENZENE	<	0	260	0.5	260	UG/L
4/13/2010	77226	1,3,5-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
4/13/2010	77350	SEC-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
4/13/2010	77353	TERT-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
4/13/2010	77443	1,2,3-TRICHLOROPROPANE (1,2,3,-TCP)	<	0.5	0.005	0.005	0.005	UG/L
4/13/2010	77562	1,1,1,2- TETRACHLOROETHANE	<	0	0	0.5	0.5	UG/L
4/13/2010	77596	DIBROMOMETHANE	<	0	0	0.5	0.5	UG/L
4/13/2010	77613	1,2,3-TRICHLOROBENZENE	<	0	0	0.5	0.5	UG/L
4/13/2010	77651	ETHYLENE DIBROMIDE (EDB)	<	0.5	0.05	0.02	0.02	UG/L
4/13/2010	81551	XYLENES (TOTAL)	<	0	1750	0	1750	UG/L
4/13/2010	81555	BROMOBENZENE	<	0	0	0.5	0.5	UG/L
4/13/2010	81611	TRICHLOROTRIFLUOROET HANE (FREON 113)	<	0	1200	10	10	UG/L
4/13/2010	82079	TURBIDITY, LABORATORY		0.78	5	0.1	5	NTU

4/13/2010	82080	TOTAL	<	0	80	0	80	UG/L
		TRIHALOMETHANES						
4/13/2010	A-008	2-CHLOROTOLUENE	<	0	140	0.5	0.5	UG/L
4/13/2010	A-009	4-CHLOROTOLUENE	<	0	140	0.5	140	UG/L
4/13/2010	A-010	N-BUTYLBENZENE	<	0	260	0.5	70	UG/L
4/13/2010	A-011	P-ISOPROPYLTOLUENE	<	0.5	0	0	0	UG/L
4/13/2010	A-012	BROMOCHLOROMETHANE	<	0	0	0.5	0.5	UG/L
4/13/2010	A-014	M,P-XYLENE	<	0	0	0.5	0	UG/L
4/13/2010	A-029	NITRATE + NITRITE (AS N)	<	0	10	0.4	5	mg/L
4/13/2010	A-031	PERCHLORATE	<	0	6	4	4	UG/L
4/13/2010	A-033	ETHYL-TERT-BUTYL ETHER	<	0	0	3	0	UG/L
4/13/2010	A-034	TERT-AMYL-METHYL ETHER	<	0	0	3	0	UG/L
4/13/2010	A-036	DIISOPROPYL ETHER	<	0	0	3	0	UG/L
2/22/2010	1045	IRON		180	300	100	300	UG/L
2/22/2010	1055	MANGANESE	<	0	50	20	50	UG/L
12/7/2009	1045	IRON	<	0	300	100	300	UG/L
12/7/2009	1055	MANGANESE		30	50	20	50	UG/L
9/14/2009	1045	IRON	<	0	300	100	300	UG/L
9/14/2009	1055	MANGANESE		31	50	20	50	UG/L
7/23/2008	95	SPECIFIC CONDUCTANCE		300	1600	0	900	US
7/23/2008	1501	GROSS ALPHA	<	0	15	3	5	PCI/L
7/23/2008	1502	GROSS ALPHA COUNTING ERROR		0.884	0	0	0	PCI/L
7/23/2008	11501	RADIUM 228	<	0	0	1	0	
7/23/2008	11502	RADIUM 228 COUNTING ERROR		0.503	0	0	0	PCI/L
7/23/2008	A-031	PERCHLORATE	<	0	6	4	4	UG/L
7/23/2008	A-072	GROSS ALPHA MDA95		1.48	3	0	0	PCI/L
7/23/2008	A-075	RADIUM 228 MDA95		0.259	1	0	0	PCI/L

Kelly Road Well - Raw (1210022-011)									
Sampling Date	Storet Number	Group/Constituent Identification	XMOD	Result	MCL	DLR	Trigger	Unit	
4/6/2015	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L	
10/27/2014	1032	CHROMIUM, HEXAVALENT	<	0	10	1	10	UG/L	
4/7/2014	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L	

11/5/2013	95	SPECIFIC CONDUCTANCE		420	1600	0	900	US
11/5/2013	403	PH, LABORATORY		7.3	0	0	0	
11/5/2013	410	ALKALINITY (TOTAL) AS CACO3		150	0	0	0	MG/L
11/5/2013	916	CALCIUM		62	0	0	0	MG/L
11/5/2013	70300	TOTAL DISSOLVED SOLIDS		280	1000	0	500	MG/L
11/5/2013	71814	LANGELIER INDEX AT SOURCE TEMP.	-	0.19	0	0	0	
11/5/2013	A-031	PERCHLORATE	<	0	6	4	4	UG/L
8/5/2013	95	SPECIFIC CONDUCTANCE		400	1600	0	900	US
5/7/2013	1045	IRON	<	0	300	100	300	UG/L
5/7/2013	1055	MANGANESE	<	0	50	20	50	UG/L
4/8/2013	81	COLOR	<	3	15	0	15	UNITS
4/8/2013	86	ODOR THRESHOLD @ 60 C		1	3	1	3	TON
4/8/2013	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
4/8/2013	940	CHLORIDE		5.7	500	0	250	MG/L
4/8/2013	945	SULFATE		83	500	0.5	250	MG/L
4/8/2013	951	FLUORIDE (F) (NATURAL- SOURCE)		0.19	2	0.1	2	MG/L
4/8/2013	1002	ARSENIC		2.6	10	2	5	UG/L
4/8/2013	1007	BARIUM	<	0	1000	100	1000	UG/L
4/8/2013	1012	BERYLLIUM	<	0	4	1	4	UG/L
4/8/2013	1027	CADMIUM	<	0	5	1	5	UG/L
4/8/2013	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
4/8/2013	1042	COPPER	<	0	1000	50	1000	UG/L
4/8/2013	1059	THALLIUM	<	0	2	1	2	UG/L
4/8/2013	1067	NICKEL	<	0	100	10	100	UG/L
4/8/2013	1077	SILVER	<	0	100	10	100	UG/L
4/8/2013	1092	ZINC	<	0	5000	50	5000	UG/L
4/8/2013	1097	ANTIMONY	<	0	6	6	6	UG/L
4/8/2013	1105	ALUMINUM	<	0	1000	50	200	UG/L
4/8/2013	1147	SELENIUM	<	0	50	5	50	UG/L
4/8/2013	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L
4/8/2013	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
4/8/2013	71900	MERCURY	<	0	2	1	2	UG/L
4/8/2013	82079	TURBIDITY, LABORATORY		0.16	5	0.1	5	NTU
4/8/2013	A-029	NITRATE + NITRITE (AS N)	<	0	10	0.4	5	mg/L
2/5/2013	1045	IRON	<	0	300	100	300	UG/L
2/5/2013	1055	MANGANESE	<	0	50	20	50	UG/L
11/7/2012	1045	IRON	<	0	300	100	300	UG/L

11/7/2012	1055	MANGANESE	<	0	50	20	50	UG/L
8/3/2012	1045	IRON	<	0	300	100	300	UG/L
8/3/2012	1055	MANGANESE	<	0	50	20	50	UG/L
7/5/2012	11501	RADIUM 228	<	0	0	1	0	
7/5/2012	11502	RADIUM 228 COUNTING ERROR		0.645	0	0	0	PCI/L
7/5/2012	A-075	RADIUM 228 MDA95		0.249	1	0	0	PCI/L
5/14/2012	1045	IRON	<	0	300	100	300	UG/L
5/14/2012	1055	MANGANESE	<	0	50	20	50	UG/L
4/9/2012	11501	RADIUM 228	<	0	0	1	0	
4/9/2012	11502	RADIUM 228 COUNTING ERROR		0.645	0	0	0	PCI/L
4/9/2012	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
4/9/2012	A-075	RADIUM 228 MDA95		0.249	1	0	0	PCI/L
2/9/2012	1045	IRON	<	0	300	100	300	UG/L
2/9/2012	1055	MANGANESE	<	0	50	20	50	UG/L
1/9/2012	11501	RADIUM 228	<	0	0	1	0	
1/9/2012	11502	RADIUM 228 COUNTING ERROR		0.645	0	0	0	PCI/L
1/9/2012	A-075	RADIUM 228 MDA95		0.249	1	0	0	PCI/L
11/28/2011	1045	IRON	<	0	300	100	300	UG/L
11/28/2011	1055	MANGANESE		70	50	20	50	UG/L
10/6/2011	11501	RADIUM 228	<	0	0	1	0	
10/6/2011	11502	RADIUM 228 COUNTING ERROR		0.645	0	0	0	PCI/L
10/6/2011	A-075	RADIUM 228 MDA95		0.249	1	0	0	PCI/L
8/15/2011	1045	IRON	<	0	300	100	300	UG/L
8/15/2011	1055	MANGANESE	<	0	50	20	50	UG/L
5/9/2011	1045	IRON	<	0	300	100	300	UG/L
5/9/2011	1055	MANGANESE		130	50	20	50	UG/L
4/11/2011	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
2/10/2011	1045	IRON	<	0	300	100	300	UG/L
2/10/2011	1055	MANGANESE	<	0	50	20	50	UG/L
11/22/2010	403	PH, LABORATORY		7.3	0	0	0	
11/22/2010	410	ALKALINITY (TOTAL) AS CACO3		110	0	0	0	MG/L
11/22/2010	916	CALCIUM		45	0	0	0	MG/L
11/22/2010	70300	TOTAL DISSOLVED SOLIDS		260	1000	0	500	MG/L
11/22/2010	71814	LANGELIER INDEX AT SOURCE TEMP.		-0.44	0	0	0	
11/22/2010	A-031	PERCHLORATE	<	4	6	4	4	UG/L
11/8/2010	1045	IRON	<	0	300	100	300	UG/L
11/8/2010	1055	MANGANESE	<	0	50	20	50	UG/L
9/13/2010	1045	IRON		360	300	100	300	UG/L
9/13/2010	1055	MANGANESE		85	50	20	50	UG/L
8/16/2010	1045	IRON		170	300	100	300	UG/L

8/16/2010	1055	MANGANESE		130	50	20	50	UG/L
4/13/2010	81	COLOR		3	15	0	15	UNITS
4/13/2010	86	ODOR THRESHOLD @ 60 C		2	3	1	3	TON
4/13/2010	95	SPECIFIC CONDUCTANCE		330	1600	0	900	US
4/13/2010	95	SPECIFIC CONDUCTANCE		310	1600	0	900	US
4/13/2010	403	PH, LABORATORY		7.6	0	0	0	
4/13/2010	410	ALKALINITY (TOTAL) AS CACO3		120	0	0	0	MG/L
4/13/2010	440	BICARBONATE ALKALINITY		120	0	0	0	MG/L
4/13/2010	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
4/13/2010	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
4/13/2010	900	HARDNESS (TOTAL) AS CACO3		140	0	0	0	MG/L
4/13/2010	916	CALCIUM		42	0	0	0	MG/L
4/13/2010	927	MAGNESIUM		9.5	0	0	0	MG/L
4/13/2010	929	SODIUM		9.7	0	0	0	MG/L
4/13/2010	937	POTASSIUM	<	2	0	0	0	MG/L
4/13/2010	940	CHLORIDE		5	500	0	250	MG/L
4/13/2010	945	SULFATE		37	500	0.5	250	MG/L
4/13/2010	951	FLUORIDE (F) (NATURAL- SOURCE)		0.22	2	0.1	2	MG/L
4/13/2010	1002	ARSENIC		2.4	10	2	5	UG/L
4/13/2010	1007	BARIUM		110	1000	100	1000	UG/L
4/13/2010	1012	BERYLLIUM	<	0	4	1	4	UG/L
4/13/2010	1027	CADMIUM	<	0	5	1	5	UG/L
4/13/2010	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
4/13/2010	1042	COPPER	<	0	1000	50	1000	UG/L
4/13/2010	1045	IRON	<	0	300	100	300	UG/L
4/13/2010	1051	LEAD	<	0	0	5	15	UG/L
4/13/2010	1055	MANGANESE		63	50	20	50	UG/L
4/13/2010	1059	THALLIUM	<	0	2	1	2	UG/L
4/13/2010	1067	NICKEL	<	0	100	10	100	UG/L
4/13/2010	1077	SILVER	<	0	100	10	100	UG/L
4/13/2010	1092	ZINC	<	0	5000	50	5000	UG/L
4/13/2010	1097	ANTIMONY	<	0	6	6	6	UG/L
4/13/2010	1105	ALUMINUM	<	0	1000	50	200	UG/L
4/13/2010	1147	SELENIUM	<	0	50	5	50	UG/L
4/13/2010	1501	GROSS ALPHA	<	0	15	3	5	PCI/L
7/13/2010	1301	GROSS ALPHA COUNTING	_	0	13	3		I CI/L
4/13/2010	1502	ERROR		0.19	0	0	0	PCI/L
4/13/2010	32101	BROMODICHLOROMETHAN E (THM)	<	0	0	1	0	UG/L

4/13/2010	32102	CARBON TETRACHLORIDE	<	0	0.5	0.5	0.5	UG/L
4/13/2010	32104	BROMOFORM (THM)	<	0	0	1	0	UG/L
4/13/2010	32105	DIBROMOCHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
4/13/2010	32106	CHLOROFORM (THM)	<	0	0	1	0	UG/L
4/13/2010	34010	TOLUENE	<	0	150	0.5	0.5	UG/L
4/13/2010	34030	BENZENE	<	0	1	0.5	0.5	UG/L
4/13/2010	34301	MONOCHLOROBENZENE	<	0	70	0.5	0.5	UG/L
4/13/2010	34311	CHLOROETHANE	<	0	0	0.5	0.5	UG/L
4/13/2010	34371	ETHYLBENZENE	<	0	300	0.5	0.5	UG/L
4/13/2010	34391	HEXACHLOROBUTADIENE	<	0	0	0.5	0.5	UG/L
4/13/2010	34413	BROMOMETHANE	<	0	0	0.5	0.5	UG/L
4/13/2010	34418	CHLOROMETHANE	<	0	0	0.5	0.5	UG/L
4/13/2010	34423	DICHLOROMETHANE	<	0	5	0.5	0.5	UG/L
4/13/2010	34475	TETRACHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
4/13/2010	34488	TRICHLOROFLUOROMETH ANE	<	0	150	5	5	UG/L
4/13/2010	34496	1,1-DICHLOROETHANE	<	0	5	0.5	0.5	UG/L
4/13/2010	34501	1,1-DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
4/13/2010	34506	1,1,1-TRICHLOROETHANE	<	0	200	0.5	0.5	UG/L
4/13/2010	34511	1,1,2-TRICHLOROETHANE	<	0	5	0.5	0.5	UG/L
4/13/2010	34516	1,1,2,2- TETRACHLOROETHANE	<	0	1	0.5	0.5	UG/L
4/13/2010	34531	1,2-DICHLOROETHANE	<	0	0.5	0.5	0.5	UG/L
4/13/2010	34536	1,2-DICHLOROBENZENE	<	0	600	0.5	0.5	UG/L
4/13/2010	34541	1,2-DICHLOROPROPANE	<	0	5	0.5	0.5	UG/L
4/13/2010	34546	TRANS-1,2- DICHLOROETHYLENE	<	0	10	0.5	0.5	UG/L
4/13/2010	34551	1,2,4-TRICHLOROBENZENE	<	0	5	0.5	5	UG/L
4/13/2010	34561	1,3-DICHLOROPROPENE (TOTAL)	<	0	0.5	0.5	0.5	UG/L
4/13/2010	34566	1,3-DICHLOROBENZENE	<	0	0	0.5	600	UG/L
4/13/2010	34571	1,4-DICHLOROBENZENE	<	0	5	0.5	0.5	UG/L
4/13/2010	34668	DICHLORODIFLUOROMETH ANE (FREON 12)	<	0	1000	0.5	1000	UG/L
4/13/2010	34696	NAPHTHALENE	<	0	170	0.5	170	UG/L
4/13/2010	34699	TRANS-1,3- DICHLOROPROPENE	<	0.5	0.5	0.5	0	UG/L

					_			
4/13/2010	34704	CIS-1,3-DICHLOROPROPENE	<	0.5	0.5	0.5	0.5	UG/L
4/13/2010	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L
4/13/2010	38761	DIBROMOCHLOROPROPAN E (DBCP)	<	2	0.2	0.01	0.01	UG/L
4/13/2010	39175	VINYL CHLORIDE	<	0	0.5	0.5	0.5	UG/L
4/13/2010	39180	TRICHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
4/13/2010	46491	METHYL-TERT-BUTYL- ETHER (MTBE)	<	0	13	3	3	UG/L
4/13/2010	70300	TOTAL DISSOLVED SOLIDS		210	1000	0	500	MG/L
4/13/2010	71814	LANGELIER INDEX AT SOURCE TEMP.	<	0	0	0	0	
4/13/2010	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
4/13/2010	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
4/13/2010	71900	MERCURY	<	0	2	1	2	UG/L
4/13/2010	77035	TERT-BUTYL ALCOHOL (TBA)	\	15	12	2	12	UG/L
4/13/2010	77093	CIS-1,2- DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
4/13/2010	77128	STYRENE	<	0	100	0.5	0.5	UG/L
4/13/2010	77135	O-XYLENE	<	0	0	0.5	0	UG/L
4/13/2010	77168	1,1-DICHLOROPROPENE	<	0	0	0.5	0.5	UG/L
4/13/2010	77170	2,2-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
4/13/2010	77173	1,3-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
4/13/2010	77222	1,2,4-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
4/13/2010	77223	ISOPROPYLBENZENE	<	0	770	0.5	770	UG/L
4/13/2010	77224	N-PROPYLBENZENE	<	0	260	0.5	260	UG/L
4/13/2010	77226	1,3,5-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
4/13/2010	77350	SEC-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
4/13/2010	77353	TERT-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
4/13/2010	77443	1,2,3-TRICHLOROPROPANE (1,2,3,-TCP)	<	0.5	0.005	0.005	0.005	UG/L
4/13/2010	77562	1,1,1,2- TETRACHLOROETHANE	<	0	0	0.5	0.5	UG/L
4/13/2010	77596	DIBROMOMETHANE	<	0	0	0.5	0.5	UG/L
4/13/2010	77613	1,2,3-TRICHLOROBENZENE	<	0	0	0.5	0.5	UG/L
4/13/2010	77651	ETHYLENE DIBROMIDE (EDB)	<	0.5	0.05	0.02	0.02	UG/L
4/13/2010	81551	XYLENES (TOTAL)	<	0	1750	0	1750	UG/L
4/13/2010	81555	BROMOBENZENE	<	0	0	0.5	0.5	UG/L

4/13/2010	81611	TRICHLOROTRIFLUOROET HANE (FREON 113)	<	0	1200	10	10	UG/L
4/13/2010	82079	TURBIDITY, LABORATORY		0.46	5	0.1	5	NTU
4/13/2010	82080	TOTAL TRIHALOMETHANES	<	0	80	0	80	UG/L
4/13/2010	A-008	2-CHLOROTOLUENE	<	0	140	0.5	0.5	UG/L
4/13/2010	A-009	4-CHLOROTOLUENE	<	0	140	0.5	140	UG/L
4/13/2010	A-010	N-BUTYLBENZENE	<	0	260	0.5	70	UG/L
4/13/2010	A-011	P-ISOPROPYLTOLUENE	<	0.5	0	0	0	UG/L
4/13/2010	A-012	BROMOCHLOROMETHANE	<	0	0	0.5	0.5	UG/L
4/13/2010	A-014	M,P-XYLENE	<	0	0	0.5	0	UG/L
4/13/2010	A-029	NITRATE + NITRITE (AS N)	<	0	10	0.4	5	mg/L
4/13/2010	A-031	PERCHLORATE	<	0	6	4	4	UG/L
4/13/2010	A-033	ETHYL-TERT-BUTYL ETHER	<	0	0	3	0	UG/L
4/13/2010	A-034	TERT-AMYL-METHYL ETHER	<	0	0	3	0	UG/L
4/13/2010	A-036	DIISOPROPYL ETHER	<	0	0	3	0	UG/L
2/22/2010	1045	IRON	<	0	300	100	300	UG/L
2/22/2010	1055	MANGANESE		33	50	20	50	UG/L
12/7/2009	1045	IRON	<	0	300	100	300	UG/L
12/7/2009	1055	MANGANESE		94	50	20	50	UG/L
9/14/2009	1045	IRON	<	0	300	100	300	UG/L
9/14/2009	1055	MANGANESE		120	50	20	50	UG/L
3/10/2009	951	FLUORIDE (F) (NATURAL- SOURCE)		0.25	2	0.1	2	MG/L
3/10/2009	1007	BARIUM		130	1000	100	1000	UG/L
3/10/2009	1045	IRON	<	0	300	100	300	UG/L
3/10/2009	1055	MANGANESE		370	50	20	50	UG/L
3/10/2009	1105	ALUMINUM	<	0	1000	50	200	UG/L

	John Well - Raw (1210022-012)									
Sampling Date	Storet Number	Group/Constituent Identification	XMOD	Result	MCL	DLR	Trigger	Unit		
7/13/2015	618	NITRATE (as N)		0	10	0.4	5	mg/L		
10/28/2014	1032	CHROMIUM, HEXAVALENT	<	0	10	1	10	UG/L		
7/14/2014	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L		
1/9/2014	95	SPECIFIC CONDUCTANCE		240	1600	0	900	US		
1/9/2014	A-031	PERCHLORATE	<	0	6	4	4	UG/L		

11/12/2013	403	PH, LABORATORY		7.5	0	0	0	
11/12/2013	410	ALKALINITY (TOTAL) AS CACO3		110	0	0	0	MG/L
11/12/2013	916	CALCIUM		40	0	0	0	MG/L
11/12/2013	70300	TOTAL DISSOLVED SOLIDS		150	1000	0	500	MG/L
11/12/2013	71814	LANGELIER INDEX AT SOURCE TEMP.	-	0.2	0	0	0	
7/9/2013	81	COLOR	<	3	15	0	15	UNITS
7/9/2013	86	ODOR THRESHOLD @ 60 C	<	0	3	1	3	TON
7/9/2013	95	SPECIFIC CONDUCTANCE		180	1600	0	900	US
7/9/2013	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
7/9/2013	940	CHLORIDE		4.6	500	0	250	MG/L
7/9/2013	945	SULFATE		11	500	0.5	250	MG/L
7/9/2013	951	FLUORIDE (F) (NATURAL- SOURCE)		0.1	2	0.1	2	MG/L
7/9/2013	1002	ARSENIC		2.2	10	2	5	UG/L
7/9/2013	1007	BARIUM	<	0	1000	100	1000	UG/L
7/9/2013	1012	BERYLLIUM	<	0	4	1	4	UG/L
7/9/2013	1027	CADMIUM	<	0	5	1	5	UG/L
7/9/2013	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
7/9/2013	1042	COPPER	<	0	1000	50	1000	UG/L
7/9/2013	1059	THALLIUM	<	0	2	1	2	UG/L
7/9/2013	1067	NICKEL	<	0	100	10	100	UG/L
7/9/2013	1077	SILVER	<	0	100	10	100	UG/L
7/9/2013	1092	ZINC	<	0	5000	50	5000	UG/L
7/9/2013	1097	ANTIMONY	<	0	6	6	6	UG/L
7/9/2013	1105	ALUMINUM	<	0	1000	50	200	UG/L
7/9/2013	1147	SELENIUM	<	0	50	5	50	UG/L
7/9/2013	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L
7/9/2013	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
7/9/2013	71900	MERCURY	<	0	2	1	2	UG/L
7/9/2013	82079	TURBIDITY, LABORATORY		0.06	5	0.1	5	NTU
7/9/2013	A-029	NITRATE + NITRITE (AS N)	<	0	10	0.4	5	mg/L
5/6/2013	1045	IRON	<	0	300	100	300	UG/L
5/6/2013	1055	MANGANESE	<	0	50	20	50	UG/L
2/8/2013	1045	IRON	<	0	300	100	300	UG/L
2/8/2013	1055	MANGANESE	<	0	50	20	50	UG/L
11/8/2012	1045	IRON	<	0	300	100	300	UG/L
11/8/2012	1055	MANGANESE	<	0	50	20	50	UG/L
8/6/2012	1045	IRON	<	0	300	100	300	UG/L
8/6/2012	1055	MANGANESE	<	0	50	20	50	UG/L

7/23/2012	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
7/6/2012	11501	RADIUM 228	<	0	0	1	0	1110/12
7/6/2012	11502	RADIUM 228 COUNTING ERROR		0.648	0	0	0	PCI/L
7/6/2012	A-075	RADIUM 228 MDA95		0.2	1	0	0	PCI/L
5/17/2012	1045	IRON	<	0	300	100	300	UG/L
5/17/2012	1055	MANGANESE	<	0	50	20	50	UG/L
4/11/2012	11501	RADIUM 228	<	0	0	1	0	
4/11/2012	11502	RADIUM 228 COUNTING ERROR		0.648	0	0	0	PCI/L
4/11/2012	A-075	RADIUM 228 MDA95		0.2	1	0	0	PCI/L
2/13/2012	1045	IRON	<	0	300	100	300	UG/L
2/13/2012	1055	MANGANESE	<	0	50	20	50	UG/L
1/11/2012	11501	RADIUM 228	<	0	0	1	0	
1/11/2012	11502	RADIUM 228 COUNTING ERROR		0.648	0	0	0	PCI/L
1/11/2012	A-075	RADIUM 228 MDA95		0.2	1	0	0	PCI/L
11/28/2011	1045	IRON		220	300	100	300	UG/L
11/28/2011	1055	MANGANESE		55	50	20	50	UG/L
10/8/2011	11501	RADIUM 228	<	0	0	1	0	
10/8/2011	11502	RADIUM 228 COUNTING ERROR		0.648	0	0	0	PCI/L
10/8/2011	A-075	RADIUM 228 MDA95		0.2	1	0	0	PCI/L
8/8/2011	1045	IRON	<	0	300	100	300	UG/L
8/8/2011	1055	MANGANESE	<	0	50	20	50	UG/L
7/18/2011	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
6/23/2011	1045	IRON		180	300	100	300	UG/L
6/23/2011	1055	MANGANESE	<	0	50	20	50	UG/L
5/9/2011	1045	IRON		360	300	100	300	UG/L
5/9/2011	1055	MANGANESE		29	50	20	50	UG/L
2/10/2011	1045	IRON		950	300	100	300	UG/L
2/10/2011 1/18/2011	1055 95	MANGANESE SPECIFIC CONDUCTANCE		180	1600	0	900	UG/L US
1/18/2011	A-031	PERCHLORATE	<	0	6	4	4	UG/L
12/17/2010	32101	BROMODICHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
12/17/2010	32104	BROMOFORM (THM)	<	0	0	1	0	UG/L
12/17/2010	32105	DIBROMOCHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
12/17/2010	32106	CHLOROFORM (THM)	<	0	0	1	0	UG/L
12/17/2010	77288	DICHLOROACETIC ACID (DCAA)	<	0	0	1	0	UG/L
12/17/2010	82080	TOTAL TRIHALOMETHANES	<	0	80	0	80	UG/L
12/17/2010	82721	DIBROMOACETIC ACID (DBAA)	<	0	0	1	0	UG/L

12/17/2010	82723	TRICHLOROACETIC ACID (TCAA)	<	0	0	1	0	UG/L
12/17/2010	A-041	MONOBROMOACETIC ACID (MBAA)	<	0	0	1	0	UG/L
12/17/2010	A-042	MONOCHLOROACETIC ACID (MCAA)	<	0	0	2	0	UG/L
12/17/2010	A-049	HALOACETIC ACIDS (5) (HAA5)	<	0	60	0	60	UG/L
11/22/2010	403	PH, LABORATORY		7.4	0	0	0	
11/22/2010	410	ALKALINITY (TOTAL) AS CACO3		100	0	0	0	MG/L
11/22/2010	916	CALCIUM		36	0	0	0	MG/L
11/22/2010	70300	TOTAL DISSOLVED SOLIDS		150	1000	0	500	MG/L
11/22/2010	71814	LANGELIER INDEX AT SOURCE TEMP.		-0.45	0	0	0	
11/8/2010	1045	IRON	<	0	300	100	300	UG/L
11/8/2010	1055	MANGANESE	<	0	50	20	50	UG/L
9/13/2010	1045	IRON		180	300	100	300	UG/L
9/13/2010	1055	MANGANESE		40	50	20	50	UG/L
7/13/2010	81	COLOR	<	3	15	0	15	UNITS
7/13/2010	86	ODOR THRESHOLD @ 60 C		2	3	1	3	TON
7/13/2010	95	SPECIFIC CONDUCTANCE		200	1600	0	900	US
7/13/2010	95	SPECIFIC CONDUCTANCE		180	1600	0	900	US
7/13/2010	403	PH, LABORATORY		7	0	0	0	
7/13/2010	410	ALKALINITY (TOTAL) AS CACO3		84	0	0	0	MG/L
7/13/2010	440	BICARBONATE ALKALINITY		84	0	0	0	MG/L
7/13/2010	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
7/13/2010	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
7/13/2010	900	HARDNESS (TOTAL) AS CACO3		69	0	0	0	MG/L
7/13/2010	916	CALCIUM		22	0	0	0	MG/L
7/13/2010	927	MAGNESIUM		3.7	0	0	0	MG/L
7/13/2010	929	SODIUM		6.9	0	0	0	MG/L
7/13/2010	937	POTASSIUM	<	2	0	0	0	MG/L
7/13/2010	940	CHLORIDE		4.9	500	0	250	MG/L
7/13/2010	945	SULFATE		7.6	500	0.5	250	MG/L
7/13/2010	951	FLUORIDE (F) (NATURAL- SOURCE)		0.11	2	0.1	2	MG/L
7/13/2010	1002	ARSENIC	<	0	10	2	5	UG/L
7/13/2010	1007	BARIUM	<	0	1000	100	1000	UG/L

= // = /= 0 / 0	1				Τ.		Ι.	
7/13/2010	1012	BERYLLIUM	<	0	4	1	4	UG/L
7/13/2010	1027	CADMIUM	<	0	5	1	5	UG/L
7/13/2010	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
7/13/2010	1042	COPPER	<	0	1000	50	1000	UG/L
7/13/2010	1045	IRON		410	300	100	300	UG/L
7/13/2010	1051	LEAD	<	0	0	5	15	UG/L
7/13/2010	1055	MANGANESE		39	50	20	50	UG/L
7/13/2010	1059	THALLIUM	<	0	2	1	2	UG/L
7/13/2010	1067	NICKEL	<	0	100	10	100	UG/L
7/13/2010	1077	SILVER	<	0	100	10	100	UG/L
7/13/2010	1092	ZINC	<	0	5000	50	5000	UG/L
7/13/2010	1097	ANTIMONY	<	0	6	6	6	UG/L
7/13/2010	1105	ALUMINUM		390	1000	50	200	UG/L
7/13/2010	1147	SELENIUM	<	0	50	5	50	UG/L
7/13/2010	1501	GROSS ALPHA	<	0	15	3	5	PCI/L
7/13/2010	1502	GROSS ALPHA COUNTING ERROR		0.19	0	0	0	PCI/L
7/13/2010	32101	BROMODICHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
7/13/2010	32102	CARBON TETRACHLORIDE	<	0	0.5	0.5	0.5	UG/L
7/13/2010	32104	BROMOFORM (THM)	<	0	0	1	0	UG/L
7/13/2010	32105	DIBROMOCHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
7/13/2010	32106	CHLOROFORM (THM)	<	0	0	1	0	UG/L
7/13/2010	34010	TOLUENE	<	0	150	0.5	0.5	UG/L
7/13/2010	34030	BENZENE	<	0	1	0.5	0.5	UG/L
7/13/2010	34301	MONOCHLOROBENZENE	<	0	70	0.5	0.5	UG/L
7/13/2010	34311	CHLOROETHANE	<	0	0	0.5	0.5	UG/L
7/13/2010	34371	ETHYLBENZENE	<	0	300	0.5	0.5	UG/L
7/13/2010	34391	HEXACHLOROBUTADIENE	<	0	0	0.5	0.5	UG/L
7/13/2010	34413	BROMOMETHANE	<	0	0	0.5	0.5	UG/L
7/13/2010	34418	CHLOROMETHANE	<	0	0	0.5	0.5	UG/L
7/13/2010	34423	DICHLOROMETHANE	<	0	5	0.5	0.5	UG/L
7/13/2010	34475	TETRACHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
7/13/2010	34488	TRICHLOROFLUOROMETH ANE	<	0	150	5	5	UG/L
7/13/2010	34496	1,1-DICHLOROETHANE	<	0	5	0.5	0.5	UG/L
7/13/2010	34501	1,1-DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
7/13/2010	34506	1,1,1-TRICHLOROETHANE	<	0	200	0.5	0.5	UG/L
7/13/2010	34511	1,1,2-TRICHLOROETHANE	<	0	5	0.5	0.5	UG/L

		1			1	ı	1	1
7/13/2010	34516	1,1,2,2- TETRACHLOROETHANE	<	0	1	0.5	0.5	UG/L
7/13/2010	34531	1,2-DICHLOROETHANE	<	0	0.5	0.5	0.5	UG/L
7/13/2010	34536	1,2-DICHLOROBENZENE	<	0	600	0.5	0.5	UG/L
7/13/2010	34541	1,2-DICHLOROPROPANE	<	0	5	0.5	0.5	UG/L
7/13/2010	34546	TRANS-1,2- DICHLOROETHYLENE	<	0	10	0.5	0.5	UG/L
7/13/2010	34551	1,2,4-TRICHLOROBENZENE	<	0	5	0.5	5	UG/L
7/13/2010	34561	1,3-DICHLOROPROPENE (TOTAL)	<	0	0.5	0.5	0.5	UG/L
7/13/2010	34566	1,3-DICHLOROBENZENE	<	0	0	0.5	600	UG/L
7/13/2010	34571	1,4-DICHLOROBENZENE	<	0	5	0.5	0.5	UG/L
7/13/2010	34668	DICHLORODIFLUOROMETH ANE (FREON 12)	<	0	1000	0.5	1000	UG/L
7/13/2010	34696	NAPHTHALENE	<	0	170	0.5	170	UG/L
7/13/2010	34699	TRANS-1,3- DICHLOROPROPENE	<	0.5	0.5	0.5	0	UG/L
7/13/2010	34704	CIS-1,3-DICHLOROPROPENE	<	0.5	0.5	0.5	0.5	UG/L
7/13/2010	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L
7/13/2010	38761	DIBROMOCHLOROPROPAN E (DBCP)	<	2	0.2	0.01	0.01	UG/L
7/13/2010	39175	VINYL CHLORIDE	<	0	0.5	0.5	0.5	UG/L
7/13/2010	39180	TRICHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
7/13/2010	46491	METHYL-TERT-BUTYL- ETHER (MTBE)	<	0	13	3	3	UG/L
7/13/2010	70300	TOTAL DISSOLVED SOLIDS		130	1000	0	500	MG/L
7/13/2010	71814	LANGELIER INDEX AT SOURCE TEMP.	<	0	0	0	0	
7/13/2010	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
7/13/2010	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
7/13/2010	71900	MERCURY	<	0	2	1	2	UG/L
7/13/2010	77035	TERT-BUTYL ALCOHOL (TBA)	<	15	12	2	12	UG/L
7/13/2010	77093	CIS-1,2- DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
7/13/2010	77128	STYRENE	<	0	100	0.5	0.5	UG/L
7/13/2010	77135	O-XYLENE	<	0	0	0.5	0	UG/L
7/13/2010	77168	1,1-DICHLOROPROPENE	<	0	0	0.5	0.5	UG/L
7/13/2010	77170	2,2-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
7/13/2010	77173	1,3-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
7/13/2010	77222	1,2,4-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L

7/13/2010	77223	ISOPROPYLBENZENE	<	0	770	0.5	770	UG/L
7/13/2010	77224	N-PROPYLBENZENE	<	0	260	0.5	260	UG/L
7/13/2010	77226	1,3,5-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
7/13/2010	77350	SEC-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
7/13/2010	77353	TERT-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
7/13/2010	77443	1,2,3-TRICHLOROPROPANE (1,2,3,-TCP)	<	0.5	0.005	0.005	0.005	UG/L
7/13/2010	77562	1,1,1,2- TETRACHLOROETHANE	<	0	0	0.5	0.5	UG/L
7/13/2010	77596	DIBROMOMETHANE	<	0	0	0.5	0.5	UG/L
7/13/2010	77613	1,2,3-TRICHLOROBENZENE	<	0	0	0.5	0.5	UG/L
7/13/2010	77651	ETHYLENE DIBROMIDE (EDB)	<	0.5	0.05	0.02	0.02	UG/L
7/13/2010	81551	XYLENES (TOTAL)	<	0	1750	0	1750	UG/L
7/13/2010	81555	BROMOBENZENE	<	0	0	0.5	0.5	UG/L
7/13/2010	81611	TRICHLOROTRIFLUOROET HANE (FREON 113)	<	0	1200	10	10	UG/L
7/13/2010	82079	TURBIDITY, LABORATORY		3.1	5	0.1	5	NTU
7/13/2010	82080	TOTAL TRIHALOMETHANES	<	0	80	0	80	UG/L
7/13/2010	A-008	2-CHLOROTOLUENE	<	0	140	0.5	0.5	UG/L
7/13/2010	A-009	4-CHLOROTOLUENE	<	0	140	0.5	140	UG/L
7/13/2010	A-010	N-BUTYLBENZENE	<	0	260	0.5	70	UG/L
7/13/2010	A-011	P-ISOPROPYLTOLUENE	<	0.5	0	0	0	UG/L
7/13/2010	A-012	BROMOCHLOROMETHANE	<	0	0	0.5	0.5	UG/L
7/13/2010	A-014	M,P-XYLENE	<	0	0	0.5	0	UG/L
7/13/2010	A-029	NITRATE + NITRITE (AS N)	<	0	10	0.4	5	mg/L
7/13/2010	A-031	PERCHLORATE	<	0	6	4	4	UG/L
7/13/2010	A-033	ETHYL-TERT-BUTYL ETHER	<	0	0	3	0	UG/L
7/13/2010	A-034	TERT-AMYL-METHYL ETHER	<	0	0	3	0	UG/L
7/13/2010	A-036	DIISOPROPYL ETHER	<	0	0	3	0	UG/L
3/19/2010	32101	BROMODICHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
3/19/2010	32104	BROMOFORM (THM)	<	0	0	1	0	UG/L
3/19/2010	32105	DIBROMOCHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
3/19/2010	32106	CHLOROFORM (THM)	<	0	0	1	0	UG/L
3/19/2010	77288	DICHLOROACETIC ACID (DCAA)	<	0	0	1	0	UG/L

3/19/2010	82080	TOTAL TRIHALOMETHANES	<	0	80	0	80	UG/L
3/19/2010	82721	DIBROMOACETIC ACID (DBAA)	<	0	0	1	0	UG/L
3/19/2010	82723	TRICHLOROACETIC ACID (TCAA)	<	0	0	1	0	UG/L
3/19/2010	A-041	MONOBROMOACETIC ACID (MBAA)	<	0	0	1	0	UG/L
3/19/2010	A-042	MONOCHLOROACETIC ACID (MCAA)	<	0	0	2	0	UG/L
3/19/2010	A-049	HALOACETIC ACIDS (5) (HAA5)	\	0	60	0	60	UG/L
3/10/2009	1002	ARSENIC	<	0	10	2	5	UG/L
3/10/2009	1045	IRON		400	300	100	300	UG/L
3/10/2009	1055	MANGANESE		28	50	20	50	UG/L
3/10/2009	1059	THALLIUM	<	0	2	1	2	UG/L
3/10/2009	1105	ALUMINUM		350	1000	50	200	UG/L
3/10/2009	82079	TURBIDITY, LABORATORY		5.4	5	0.1	5	NTU
3/9/2009	32101	BROMODICHLOROMETHAN E (THM)		4.3	0	1	0	UG/L
3/9/2009	32104	BROMOFORM (THM)		1	0	1	0	UG/L
3/9/2009	32105	DIBROMOCHLOROMETHAN E (THM)		4.2	0	1	0	UG/L
3/9/2009	32106	CHLOROFORM (THM)		5.9	0	1	0	UG/L
3/9/2009	77288	DICHLOROACETIC ACID (DCAA)		2.8	0	1	0	UG/L
3/9/2009	82080	TOTAL TRIHALOMETHANES		15	80	0	80	UG/L
3/9/2009	82721	DIBROMOACETIC ACID (DBAA)	<	0	0	1	0	UG/L
3/9/2009	82723	TRICHLOROACETIC ACID (TCAA)		2.7	0	1	0	UG/L
3/9/2009	A-042	MONOCHLOROACETIC ACID (MCAA)	<	0	0	2	0	UG/L
3/9/2009	A-049	HALOACETIC ACIDS (5) (HAA5)		5.5	60	0	60	UG/L
12/15/2008	32101	BROMODICHLOROMETHAN E (THM)		10	0	1	0	UG/L
12/15/2008	32104	BROMOFORM (THM)	<	0	0	1	0	UG/L
12/15/2008	32105	DIBROMOCHLOROMETHAN E (THM)		4.1	0	1	0	UG/L
12/15/2008	32106	CHLOROFORM (THM)		47	0	1	0	UG/L
12/15/2008	77288	DICHLOROACETIC ACID (DCAA)		26	0	1	0	UG/L
12/15/2008	82080	TOTAL TRIHALOMETHANES		61	80	0	80	UG/L

12/15/2008	82721	DIBROMOACETIC ACID (DBAA)	1.02	0	1	0	UG/L
12/15/2008	82723	TRICHLOROACETIC ACID (TCAA)	28	0	1	0	UG/L
12/15/2008	A-042	MONOCHLOROACETIC ACID (MCAA)	2.44	0	2	0	UG/L
12/15/2008	A-049	HALOACETIC ACIDS (5) (HAA5)	57	60	0	60	UG/L

	Ted Well - Raw (1210022-019)											
Sampling Date	Storet Number	Group/Constituent Identification	XMOD	Result	MCL	DLR	Trigger	Unit				
4/6/2015	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L				
3/9/2015	1501	GROSS ALPHA	<	0	15	3	5	PCI/L				
3/9/2015	1502	GROSS ALPHA COUNTING ERROR		0.191	0	0	0	PCI/L				
3/9/2015	A-072	GROSS ALPHA MDA95		1.07	3	0	0	PCI/L				
10/28/2014	1032	CHROMIUM, HEXAVALENT	<	0	10	1	10	UG/L				
4/14/2014	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L				
11/19/2013	403	PH, LABORATORY		7.8	0	0	0					
11/19/2013	410	ALKALINITY (TOTAL) AS CACO3		95	0	0	0	MG/L				
11/19/2013	916	CALCIUM		53	0	0	0	MG/L				
11/19/2013	70300	TOTAL DISSOLVED SOLIDS		220	1000	0	500	MG/L				
11/19/2013	71814	LANGELIER INDEX AT SOURCE TEMP.		0.099	0	0	0					
8/1/2013	95	SPECIFIC CONDUCTANCE		310	1600	0	900	US				
8/1/2013	A-031	PERCHLORATE	<	0	6	4	4	UG/L				
5/10/2013	1045	IRON	<	0	300	100	300	UG/L				
5/10/2013	1055	MANGANESE	<	0	50	20	50	UG/L				
4/8/2013	81	COLOR	<	3	15	0	15	UNITS				
4/8/2013	86	ODOR THRESHOLD @ 60 C		1	3	1	3	TON				
4/8/2013	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L				
4/8/2013	940	CHLORIDE		5.2	500	0	250	MG/L				
4/8/2013	945	SULFATE		52	500	0.5	250	MG/L				
4/8/2013	951	FLUORIDE (F) (NATURAL- SOURCE)		0.14	2	0.1	2	MG/L				
4/8/2013	1002	ARSENIC		2.1	10	2	5	UG/L				
4/8/2013	1007	BARIUM	<	0	1000	100	1000	UG/L				
4/8/2013	1012	BERYLLIUM	<	0	4	1	4	UG/L				

4/8/2013	1027	CADMIUM	<	0	5	1	5	UG/L
4/8/2013	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
4/8/2013	1042	COPPER	<	0	1000	50	1000	UG/L
4/8/2013	1059	THALLIUM	<	0	2	1	2	UG/L
4/8/2013	1067	NICKEL	<	0	100	10	100	UG/L
4/8/2013	1077	SILVER	<	0	100	10	100	UG/L
4/8/2013	1092	ZINC	<	0	5000	50	5000	UG/L
4/8/2013	1097	ANTIMONY	<	0	6	6	6	UG/L
4/8/2013	1105	ALUMINUM	<	0	1000	50	200	UG/L
4/8/2013	1147	SELENIUM	<	0	50	5	50	UG/L
4/8/2013	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L
4/8/2013	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
4/8/2013	71900	MERCURY	<	0	2	1	2	UG/L
4/8/2013	82079	TURBIDITY, LABORATORY		0.51	5	0.1	5	NTU
4/8/2013	A-029	NITRATE + NITRITE (AS N)	<	0	10	0.4	5	mg/L
2/5/2013	1045	IRON	<	0	300	100	300	UG/L
2/5/2013	1055	MANGANESE	<	0	50	20	50	UG/L
11/9/2012	1045	IRON	<	0	300	100	300	UG/L
11/9/2012	1055	MANGANESE	<	0	50	20	50	UG/L
9/5/2012	95	SPECIFIC CONDUCTANCE		300	1600	0	900	US
9/5/2012	A-031	PERCHLORATE	<	0	6	4	4	UG/L
8/3/2012	1045	IRON	<	0	300	100	300	UG/L
8/3/2012	1055	MANGANESE	<	0	50	20	50	UG/L
7/16/2012	403	PH, LABORATORY		7.6	0	0	0	
7/16/2012	410	ALKALINITY (TOTAL) AS CACO3		98	0	0	0	MG/L
7/16/2012	916	CALCIUM		47	0	0	0	MG/L
7/16/2012	70300	TOTAL DISSOLVED SOLIDS		230	1000	0	500	MG/L
7/16/2012	71814	LANGELIER INDEX AT SOURCE TEMP.	-	0.086	0	0	0	
7/16/2012	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
5/15/2012	1045	IRON	<	0	300	100	300	UG/L
5/15/2012	1055	MANGANESE	<	0	50	20	50	UG/L
4/23/2012	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
2/9/2012	1045	IRON	<	0	300	100	300	UG/L
2/9/2012	1055	MANGANESE	<	0	50	20	50	UG/L
6/23/2011	1045	IRON	<	0	300	100	300	UG/L
6/23/2011	1055	MANGANESE	<	0	50	20	50	UG/L
3/14/2011	1501	GROSS ALPHA		0.186	15	3	5	PCI/L
3/14/2011	1502	GROSS ALPHA COUNTING ERROR		0.843	0	0	0	PCI/L
3/14/2011	11501	RADIUM 228	<	0	0	1	0	

3/14/2011	11502	RADIUM 228 COUNTING ERROR		0.6	0	0	0	PCI/L
3/14/2011	A-072	GROSS ALPHA MDA95		1.29	3	0	0	PCI/L
3/14/2011	A-075	RADIUM 228 MDA95		0.291	1	0	0	PCI/L
5/25/2010	81	COLOR	<	3	15	0	15	UNITS
5/25/2010	86	ODOR THRESHOLD @ 60 C		1	3	1	3	TON
5/25/2010	95	SPECIFIC CONDUCTANCE		250	1600	0	900	US
5/25/2010	403	PH, LABORATORY		7.9	0	0	0	
5/25/2010	410	ALKALINITY (TOTAL) AS CACO3		80	0	0	0	MG/L
5/25/2010	440	BICARBONATE ALKALINITY		79	0	0	0	MG/L
5/25/2010	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
5/25/2010	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
5/25/2010	900	HARDNESS (TOTAL) AS CACO3		100	0	0	0	MG/L
5/25/2010	916	CALCIUM		33	0	0	0	MG/L
5/25/2010	927	MAGNESIUM		4.5	0	0	0	MG/L
5/25/2010	929	SODIUM		6.9	0	0	0	MG/L
5/25/2010	937	POTASSIUM	<	2	0	0	0	MG/L
5/25/2010	940	CHLORIDE		5.4	500	0	250	MG/L
5/25/2010	945	SULFATE		34	500	0.5	250	MG/L
5/25/2010	951	FLUORIDE (F) (NATURAL- SOURCE)		0.15	2	0.1	2	MG/L
5/25/2010	1002	ARSENIC	<	0	10	2	5	UG/L
5/25/2010	1007	BARIUM	<	0	1000	100	1000	UG/L
5/25/2010	1012	BERYLLIUM	<	0	4	1	4	UG/L
5/25/2010	1027	CADMIUM	<	0	5	1	5	UG/L
5/25/2010	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
5/25/2010	1042	COPPER	<	0	1000	50	1000	UG/L
5/25/2010	1045	IRON	<	0	300	100	300	UG/L
5/25/2010	1051	LEAD	<	0	0	5	15	UG/L
5/25/2010	1055	MANGANESE	<	0	50	20	50	UG/L
5/25/2010	1059	THALLIUM	<	0	2	1	2	UG/L
5/25/2010	1067	NICKEL	<	0	100	10	100	UG/L
5/25/2010	1077	SILVER	<	0	100	10	100	UG/L
5/25/2010	1092	ZINC	<	0	5000	50	5000	UG/L
5/25/2010	1097	ANTIMONY	<	0	6	6	6	UG/L
5/25/2010	1105	ALUMINUM	<	0	1000	50	200	UG/L
5/25/2010	1147	SELENIUM	<	0	50	5	50	UG/L
5/25/2010	32101	BROMODICHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
5/25/2010	32102	CARBON TETRACHLORIDE	<	0	0.5	0.5	0.5	UG/L

5/25/2010	32104	BROMOFORM (THM)	<	0	0	1	0	UG/L
5/25/2010	32105	DIBROMOCHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
5/25/2010	32106	CHLOROFORM (THM)	<	0	0	1	0	UG/L
5/25/2010	34010	TOLUENE	<	0	150	0.5	0.5	UG/L
5/25/2010	34030	BENZENE	<	0	1	0.5	0.5	UG/L
5/25/2010	34301	MONOCHLOROBENZENE	<	0	70	0.5	0.5	UG/L
5/25/2010	34311	CHLOROETHANE	<	0	0	0.5	0.5	UG/L
5/25/2010	34371	ETHYLBENZENE	<	0	300	0.5	0.5	UG/L
5/25/2010	34391	HEXACHLOROBUTADIENE	<	0	0	0.5	0.5	UG/L
5/25/2010	34413	BROMOMETHANE	<	0	0	0.5	0.5	UG/L
5/25/2010	34418	CHLOROMETHANE	<	0	0	0.5	0.5	UG/L
5/25/2010	34423	DICHLOROMETHANE	<	0	5	0.5	0.5	UG/L
5/25/2010	34475	TETRACHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
5/25/2010	34488	TRICHLOROFLUOROMETH ANE	<	0	150	5	5	UG/L
5/25/2010	34496	1,1-DICHLOROETHANE	<	0	5	0.5	0.5	UG/L
5/25/2010	34501	1,1-DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
5/25/2010	34506	1,1,1-TRICHLOROETHANE	<	0	200	0.5	0.5	UG/L
5/25/2010	34511	1,1,2-TRICHLOROETHANE	<	0	5	0.5	0.5	UG/L
5/25/2010	34516	1,1,2,2- TETRACHLOROETHANE	<	0	1	0.5	0.5	UG/L
5/25/2010	34531	1,2-DICHLOROETHANE	<	0	0.5	0.5	0.5	UG/L
5/25/2010	34536	1,2-DICHLOROBENZENE	<	0	600	0.5	0.5	UG/L
5/25/2010	34541	1,2-DICHLOROPROPANE	<	0	5	0.5	0.5	UG/L
5/25/2010	34546	TRANS-1,2- DICHLOROETHYLENE	<	0	10	0.5	0.5	UG/L
5/25/2010	34551	1,2,4-TRICHLOROBENZENE	<	0	5	0.5	5	UG/L
5/25/2010	34561	1,3-DICHLOROPROPENE (TOTAL)	<	0	0.5	0.5	0.5	UG/L
5/25/2010	34566	1,3-DICHLOROBENZENE	<	0	0	0.5	600	UG/L
5/25/2010	34571	1,4-DICHLOROBENZENE	<	0	5	0.5	0.5	UG/L
5/25/2010	34668	DICHLORODIFLUOROMETH ANE (FREON 12)	<	0	1000	0.5	1000	UG/L
5/25/2010	34696	NAPHTHALENE	<	0	170	0.5	170	UG/L
5/25/2010	34699	TRANS-1,3- DICHLOROPROPENE	<	0.5	0.5	0.5	0	UG/L
5/25/2010	34704	CIS-1,3-DICHLOROPROPENE	<	0.5	0.5	0.5	0.5	UG/L

					1		1	1
5/25/2010	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L
5/25/2010	39175	VINYL CHLORIDE	<	0	0.5	0.5	0.5	UG/L
5/25/2010	39180	TRICHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
5/25/2010	46491	METHYL-TERT-BUTYL- ETHER (MTBE)	<	0	13	3	3	UG/L
5/25/2010	70300	TOTAL DISSOLVED SOLIDS		160	1000	0	500	MG/L
5/25/2010	71814	LANGELIER INDEX AT SOURCE TEMP.	-	0.041	0	0	0	
5/25/2010	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
5/25/2010	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
5/25/2010	71900	MERCURY	<	0	2	1	2	UG/L
5/25/2010	77035	TERT-BUTYL ALCOHOL (TBA)	<	15	12	2	12	UG/L
5/25/2010	77093	CIS-1,2- DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
5/25/2010	77128	STYRENE	<	0	100	0.5	0.5	UG/L
5/25/2010	77135	O-XYLENE	<	0	0	0.5	0	UG/L
5/25/2010	77168	1,1-DICHLOROPROPENE	<	0	0	0.5	0.5	UG/L
5/25/2010	77170	2,2-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
5/25/2010	77173	1,3-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
5/25/2010	77222	1,2,4-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
5/25/2010	77223	ISOPROPYLBENZENE	<	0	770	0.5	770	UG/L
5/25/2010	77224	N-PROPYLBENZENE	<	0	260	0.5	260	UG/L
5/25/2010	77226	1,3,5-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
5/25/2010	77350	SEC-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
5/25/2010	77353	TERT-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
5/25/2010	77443	1,2,3-TRICHLOROPROPANE (1,2,3,-TCP)	<	0.5	0.005	0.005	0.005	UG/L
5/25/2010	77562	1,1,1,2- TETRACHLOROETHANE	<	0	0	0.5	0.5	UG/L
5/25/2010	77596	DIBROMOMETHANE	<	0	0	0.5	0.5	UG/L
5/25/2010	77613	1,2,3-TRICHLOROBENZENE	<	0	0	0.5	0.5	UG/L
5/25/2010	81551	XYLENES (TOTAL)	<	0	1750	0	1750	UG/L
5/25/2010	81555	BROMOBENZENE	<	0	0	0.5	0.5	UG/L
5/25/2010	81611	TRICHLOROTRIFLUOROET HANE (FREON 113)	<	0	1200	10	10	UG/L
5/25/2010	82079	TURBIDITY, LABORATORY		1.4	5	0.1	5	NTU
5/25/2010	82080	TOTAL TRIHALOMETHANES	<	0	80	0	80	UG/L

5/25/2010	A-008	2-CHLOROTOLUENE	<	0	140	0.5	0.5	UG/L
5/25/2010	A-009	4-CHLOROTOLUENE	<	0	140	0.5	140	UG/L
5/25/2010	A-010	N-BUTYLBENZENE	<	0	260	0.5	70	UG/L
5/25/2010	A-011	P-ISOPROPYLTOLUENE	<	0.5	0	0	0	UG/L
5/25/2010	A-012	BROMOCHLOROMETHANE	<	0	0	0.5	0.5	UG/L
5/25/2010	A-014	M,P-XYLENE	<	0	0	0.5	0	UG/L
5/25/2010	A-029	NITRATE + NITRITE (AS N)	<	0	10	0.4	5	mg/L
5/25/2010	A-033	ETHYL-TERT-BUTYL ETHER	<	0	0	3	0	UG/L
5/25/2010	A-034	TERT-AMYL-METHYL ETHER	<	0	0	3	0	UG/L
5/25/2010	A-036	DIISOPROPYL ETHER	<	0	0	3	0	UG/L

	Larry Well - Raw (1210022-021)									
Sampling Date	Storet Number	Group/Constituent Identification	XMOD	Result	MCL	DLR	Trigger	Unit		
12/7/2015	1032	CHROMIUM, HEXAVALENT	<	0	10	1	10	UG/L		
12/7/2015	1059	THALLIUM		0	2	1	2	UG/L		
4/6/2015	940	CHLORIDE		6.8	500	0	250	MG/L		
4/6/2015	945	SULFATE		120	500	0.5	250	MG/L		
4/6/2015	951	FLUORIDE (F) (NATURAL- SOURCE)	<	0	2	0.1	2	MG/L		
4/6/2015	1002	ARSENIC	<	0	10	2	5	UG/L		
4/6/2015	1007	BARIUM	<	0	1000	100	1000	UG/L		
4/6/2015	1012	BERYLLIUM	<	0	4	1	4	UG/L		
4/6/2015	1027	CADMIUM	<	0	5	1	5	UG/L		
4/6/2015	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L		
4/6/2015	1042	COPPER	<	0	1000	50	1000	UG/L		
4/6/2015	1067	NICKEL	<	0	100	10	100	UG/L		
4/6/2015	1077	SILVER	<	0	100	10	100	UG/L		
4/6/2015	1092	ZINC	<	0	5000	50	5000	UG/L		
4/6/2015	1097	ANTIMONY	<	0	6	6	6	UG/L		
4/6/2015	1105	ALUMINUM	<	0	1000	50	200	UG/L		
4/6/2015	1147	SELENIUM	<	0	50	5	50	UG/L		
4/6/2015	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L		
4/6/2015	71900	MERCURY	<	0	2	1	2	UG/L		
4/6/2015	A-031	PERCHLORATE	<	4	6	4	4	UG/L		
12/15/2014	1032	CHROMIUM, HEXAVALENT	<	0	10	1	10	UG/L		

8/18/2014	70300	TOTAL DISSOLVED SOLIDS		490	1000	0	500	MG/L
8/18/2014	71850	NITRATE (AS NO3)		0	45	2	23	MG/L
4/22/2014	95	SPECIFIC CONDUCTANCE		790	1600	0	900	US
4/22/2014	95	SPECIFIC CONDUCTANCE		760	1600	0	900	US
4/22/2014	900	HARDNESS (TOTAL) AS CACO3		470	0	0	0	MG/L
4/22/2014	916	CALCIUM		150	0	0	0	MG/L
4/22/2014	927	MAGNESIUM		24	0	0	0	MG/L
4/22/2014	929	SODIUM		13	0	0	0	MG/L
4/22/2014	937	POTASSIUM		1.8	0	0	0	MG/L
4/22/2014	940	CHLORIDE		8	500	0	250	MG/L
4/22/2014	945	SULFATE		250	500	0.5	250	MG/L
4/22/2014	951	FLUORIDE (F) (NATURAL- SOURCE)		0.1	2	0.1	2	MG/L
4/22/2014	1002	ARSENIC	<	0	10	2	5	UG/L
4/22/2014	1007	BARIUM	<	0	1000	100	1000	UG/L
4/22/2014	1012	BERYLLIUM	<	0	4	1	4	UG/L
4/22/2014	1027	CADMIUM	<	0	5	1	5	UG/L
4/22/2014	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
4/22/2014	1042	COPPER	<	0	1000	50	1000	UG/L
4/22/2014	1042	IRON	<	0	300	100	300	UG/L
4/22/2014	1051	LEAD	<	0	0	5	15	UG/L
4/22/2014	1055	MANGANESE	<	0	50	20	50	UG/L
4/22/2014	1059	THALLIUM	<	0	2	1	2	UG/L
4/22/2014	1059	NICKEL	<	0	100	10	100	UG/L
4/22/2014	1007	SILVER	<	0	100	10	100	UG/L
4/22/2014	1077	ZINC		0	5000	50	5000	UG/L
4/22/2014	1092	ANTIMONY	<	0	1		 	UG/L
4/22/2014	1105	ALUMINUM	<	0	1000	50	200	UG/L
				0	50	5	50	
4/22/2014	38260	SELENIUM FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L
4/22/2014	71900	MERCURY	<	0	2	1	2	UG/L
4/22/2014	A-031	PERCHLORATE	<	0	6	4	4	UG/L
12/17/2013	403	PH, LABORATORY		7.8	0	0	0	C G/L
12/17/2013	410	ALKALINITY (TOTAL) AS CACO3		120	0	0	0	MG/L
12/17/2013	916	CALCIUM		50	0	0	0	MG/L
12/17/2013	70300	TOTAL DISSOLVED SOLIDS		230	1000	0	500	MG/L
12/17/2013	71814	LANGELIER INDEX AT SOURCE TEMP.		0.14	0	0	0	
8/12/2013	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L

8/12/2013	70300	TOTAL DISSOLVED SOLIDS		310	1000	0	500	MG/L
8/12/2013	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
8/12/2013	A-029	NITRATE + NITRITE (AS N)	<	0	10	0.4	5	mg/L
5/6/2013	1045	IRON	<	0	300	100	300	UG/L
5/6/2013	1055	MANGANESE		26	50	20	50	UG/L
4/15/2013	95	SPECIFIC CONDUCTANCE		570	1600	0	900	US
4/15/2013	403	PH, LABORATORY		7.8	0	0	0	
4/15/2013	410	ALKALINITY (TOTAL) AS CACO3		130	0	0	0	MG/L
4/15/2013	440	BICARBONATE ALKALINITY		130	0	0	0	MG/L
4/15/2013	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
4/15/2013	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
4/15/2013	900	HARDNESS (TOTAL) AS CACO3		300	0	0	0	MG/L
4/15/2013	916	CALCIUM		91	0	0	0	MG/L
4/15/2013	927	MAGNESIUM		17	0	0	0	MG/L
4/15/2013	929	SODIUM		13	0	0	0	MG/L
4/15/2013	940	CHLORIDE		7.3	500	0	250	MG/L
4/15/2013	945	SULFATE		160	500	0.5	250	MG/L
4/15/2013	951	FLUORIDE (F) (NATURAL- SOURCE)	<	0	2	0.1	2	MG/L
4/15/2013	1002	ARSENIC	<	0	10	2	5	UG/L
4/15/2013	1007	BARIUM	<	0	1000	100	1000	UG/L
4/15/2013	1012	BERYLLIUM	<	0	4	1	4	UG/L
4/15/2013	1027	CADMIUM	<	0	5	1	5	UG/L
4/15/2013	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
4/15/2013	1042	COPPER	<	0	1000	50	1000	UG/L
4/15/2013	1059	THALLIUM	<	0	2	1	2	UG/L
4/15/2013	1067	NICKEL	<	0	100	10	100	UG/L
4/15/2013	1077	SILVER	<	0	100	10	100	UG/L
4/15/2013	1092	ZINC	<	0	5000	50	5000	UG/L
4/15/2013	1097	ANTIMONY	<	0	6	6	6	UG/L
4/15/2013	1105	ALUMINUM	<	0	1000	50	200	UG/L
4/15/2013	1147	SELENIUM	<	0	50	5	50	UG/L
4/15/2013	1501	GROSS ALPHA	<	0	15	3	5	PCI/L
4/15/2013	1502	GROSS ALPHA COUNTING ERROR		0.156	0	0	0	PCI/L
4/15/2013	32101	BROMODICHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
4/15/2013	32102	CARBON TETRACHLORIDE	<	0	0.5	0.5	0.5	UG/L
4/15/2013	32104	BROMOFORM (THM)	<	0	0	1	0	UG/L

4/15/2013	32105	DIBROMOCHLOROMETHAN	<	0	0	1	0	UG/L
4/15/2012		E (THM)		0	0	1	0	UG/L
4/15/2013 4/15/2013	32106 34010	CHLOROFORM (THM) TOLUENE	<	0	150	0.5	0.5	UG/L
4/15/2013	34010	BENZENE	<	0	1	0.5	0.5	UG/L
4/13/2013	34030	BENZENE		0	1	0.5	0.5	UG/L
4/15/2013	34301	MONOCHLOROBENZENE	<	0	70	0.5	0.5	UG/L
4/15/2013	34311	CHLOROETHANE	<	0	0	0.5	0.5	UG/L
4/15/2013	34371	ETHYLBENZENE	<	0	300	0.5	0.5	UG/L
4/15/2013	34391	HEXACHLOROBUTADIENE	<	0	0	0.5	0.5	UG/L
4/15/2013	34413	BROMOMETHANE	<	0	0	0.5	0.5	UG/L
4/15/2013	34418	CHLOROMETHANE	<	0	0	0.5	0.5	UG/L
4/15/2013	34423	DICHLOROMETHANE	<	0	5	0.5	0.5	UG/L
4/15/2013	34475	TETRACHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
4/15/2013	34488	TRICHLOROFLUOROMETH ANE	<	0	150	5	5	UG/L
4/15/2013	34496	1,1-DICHLOROETHANE	<	0	5	0.5	0.5	UG/L
4/15/2013	34501	1,1-DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
4/15/2013	34506	1,1,1-TRICHLOROETHANE	<	0	200	0.5	0.5	UG/L
4/15/2013	34511	1,1,2-TRICHLOROETHANE	<	0	5	0.5	0.5	UG/L
4/15/2013	34516	1,1,2,2- TETRACHLOROETHANE	<	0	1	0.5	0.5	UG/L
4/15/2013	34531	1,2-DICHLOROETHANE	<	0	0.5	0.5	0.5	UG/L
4/15/2013	34536	1,2-DICHLOROBENZENE	<	0	600	0.5	0.5	UG/L
4/15/2013	34541	1,2-DICHLOROPROPANE	<	0	5	0.5	0.5	UG/L
4/15/2013	34546	TRANS-1,2- DICHLOROETHYLENE	<	0	10	0.5	0.5	UG/L
4/15/2013	34551	1,2,4-TRICHLOROBENZENE	<	0	5	0.5	5	UG/L
4/15/2013	34561	1,3-DICHLOROPROPENE (TOTAL)	<	0	0.5	0.5	0.5	UG/L
4/15/2013	34566	1,3-DICHLOROBENZENE	<	0	0	0.5	600	UG/L
4/15/2013	34571	1,4-DICHLOROBENZENE	<	0	5	0.5	0.5	UG/L
4/15/2013	34668	DICHLORODIFLUOROMETH ANE (FREON 12)	<	0	1000	0.5	1000	UG/L
4/15/2013	34696	NAPHTHALENE	<	0	170	0.5	170	UG/L
4/15/2013	34699	TRANS-1,3- DICHLOROPROPENE	<	0.5	0.5	0.5	0	UG/L
4/15/2013	34704	CIS-1,3-DICHLOROPROPENE	<	0.5	0.5	0.5	0.5	UG/L
4/15/2013	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L

4/15/2013	39175	VINYL CHLORIDE	<	T 0	0.5	0.5	0.5	UG/L
4/15/2013	39180	TRICHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
4/15/2013	46491	METHYL-TERT-BUTYL- ETHER (MTBE)	<	0	13	3	3	UG/L
4/15/2013	71814	LANGELIER INDEX AT SOURCE TEMP.		0.53	0	0	0	
4/15/2013	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
4/15/2013	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
4/15/2013	71900	MERCURY	<	0	2	1	2	UG/L
4/15/2013	77035	TERT-BUTYL ALCOHOL (TBA)	<	15	12	2	12	UG/L
4/15/2013	77093	CIS-1,2- DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
4/15/2013	77128	STYRENE	<	0	100	0.5	0.5	UG/L
4/15/2013	77135	O-XYLENE	<	0	0	0.5	0	UG/L
4/15/2013	77168	1,1-DICHLOROPROPENE	<	0	0	0.5	0.5	UG/L
4/15/2013	77170	2,2-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
4/15/2013	77173	1,3-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
4/15/2013	77222	1,2,4-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
4/15/2013	77223	ISOPROPYLBENZENE	<	0	770	0.5	770	UG/L
4/15/2013	77224	N-PROPYLBENZENE	<	0	260	0.5	260	UG/L
4/15/2013	77226	1,3,5-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
4/15/2013	77350	SEC-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
4/15/2013	77353	TERT-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
4/15/2013	77443	1,2,3-TRICHLOROPROPANE (1,2,3,-TCP)	<	0.5	0.005	0.005	0.005	UG/L
4/15/2013	77562	1,1,1,2- TETRACHLOROETHANE	<	0	0	0.5	0.5	UG/L
4/15/2013	77596	DIBROMOMETHANE	<	0	0	0.5	0.5	UG/L
4/15/2013	77613	1,2,3-TRICHLOROBENZENE	<	0	0	0.5	0.5	UG/L
4/15/2013	81551	XYLENES (TOTAL)	<	0	1750	0	1750	UG/L
4/15/2013	81555	BROMOBENZENE	<	0	0	0.5	0.5	UG/L
4/15/2013	81611	TRICHLOROTRIFLUOROET HANE (FREON 113)	<	0	1200	10	10	UG/L
4/15/2013	81855	ASBESTOS	<	0	7	0.2	7	MFL
4/15/2013	82080	TOTAL TRIHALOMETHANES	<	0	80	0	80	UG/L
4/15/2013	82298	BROMIDE	<	0.5	0	0	0	MG/L
4/15/2013	A-008	2-CHLOROTOLUENE	<	0	140	0.5	0.5	UG/L
4/15/2013	A-009	4-CHLOROTOLUENE	<	0	140	0.5	140	UG/L
4/15/2013	A-010	N-BUTYLBENZENE	<	0	260	0.5	70	UG/L
4/15/2013	A-011	P-ISOPROPYLTOLUENE	<	0.5	0	0	0	UG/L

				ı			1	1
4/15/2013	A-012	BROMOCHLOROMETHANE	<	0	0	0.5	0.5	UG/L
4/15/2013	A-014	M,P-XYLENE	<	0	0	0.5	0	UG/L
4/15/2013	A-029	NITRATE + NITRITE (AS N)	<	0	10	0.4	5	mg/L
4/15/2013	A-031	PERCHLORATE	<	0	6	4	4	UG/L
4/15/2013	A-033	ETHYL-TERT-BUTYL ETHER	<	0	0	3	0	UG/L
4/15/2013	A-034	TERT-AMYL-METHYL ETHER	<	0	0	3	0	UG/L
4/15/2013	A-036	DIISOPROPYL ETHER	<	0	0	3	0	UG/L
4/15/2013	A-072	GROSS ALPHA MDA95		1.16	3	0	0	PCI/L
2/8/2013	900	HARDNESS (TOTAL) AS CACO3		330	0	0	0	MG/L
2/8/2013	916	CALCIUM		100	0	0	0	MG/L
2/8/2013	927	MAGNESIUM		18	0	0	0	MG/L
2/8/2013	1045	IRON	<	0	300	100	300	UG/L
2/8/2013	1055	MANGANESE		24	50	20	50	UG/L
11/7/2012	1045	IRON	<	0	300	100	300	UG/L
11/7/2012	1055	MANGANESE		54	50	20	50	UG/L
9/5/2012	95	SPECIFIC CONDUCTANCE		370	1600	0	900	US
9/5/2012	A-031	PERCHLORATE	<	0	6	4	4	UG/L
8/6/2012	1045	IRON	<	0	300	100	300	UG/L
8/6/2012	1055	MANGANESE		24	50	20	50	UG/L
7/10/2012	403	PH, LABORATORY		7.5	0	0	0	
7/10/2012	410	ALKALINITY (TOTAL) AS CACO3		120	0	0	0	MG/L
7/10/2012	916	CALCIUM		48	0	0	0	MG/L
7/10/2012	70300	TOTAL DISSOLVED SOLIDS		260	1000	0	500	MG/L
7/10/2012	71814	LANGELIER INDEX AT SOURCE TEMP.	-	0.17	0	0	0	
7/10/2012	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
5/10/2012	1045	IRON	<	0	300	100	300	UG/L
5/10/2012	1055	MANGANESE	<	0	50	20	50	UG/L
4/23/2012	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
2/9/2012	1045	IRON	<	0	300	100	300	UG/L
2/9/2012	1055	MANGANESE		31	50	20	50	UG/L
6/23/2011	1045	IRON		280	300	100	300	UG/L
6/23/2011	1055	MANGANESE	<	0	50	20	50	UG/L

	Lot W # 1 Well - Raw (1210022-029)										
Sampling Date	Storet Number	Group/Constituent Identification	XMOD	Result	MCL	DLR	Trigger	Unit			
11/9/2015	1045	IRON		0	300	100	300	UG/L			
11/9/2015	1055	MANGANESE		120	50	20	50	UG/L			
7/14/2015	81	COLOR		3	15	0	15	UNITS			
7/14/2015	86	ODOR THRESHOLD @ 60 C		2	3	1	3	TON			
7/14/2015	618	NITRATE (as N)		0	10	0.4	5	mg/L			
7/14/2015	620	NITRITE (AS N)		0	1	0.4	0.5	mg/L			
7/14/2015	940	CHLORIDE		6.3	500	0	250	MG/L			
7/14/2015	945	SULFATE		47	500	0.5	250	MG/L			
7/14/2015	951	FLUORIDE (F) (NATURAL- SOURCE)		0.11	2	0.1	2	MG/L			
7/14/2015	1002	ARSENIC		0	10	2	5	UG/L			
7/14/2015	1007	BARIUM		0	1000	100	1000	UG/L			
7/14/2015	1012	BERYLLIUM		0	4	1	4	UG/L			
7/14/2015	1027	CADMIUM		0	5	1	5	UG/L			
7/14/2015	1034	CHROMIUM (TOTAL)		0	50	10	50	UG/L			
7/14/2015	1042	COPPER		0	1000	50	1000	UG/L			
7/14/2015	1077	SILVER		0	100	10	100	UG/L			
7/14/2015	1092	ZINC		0	5000	50	5000	UG/L			
7/14/2015	1105	ALUMINUM		0	1000	50	200	UG/L			
7/14/2015	1147	SELENIUM		0	50	5	50	UG/L			
7/14/2015	38260	FOAMING AGENTS (MBAS)		0.05	0.5	0	0.5	MG/L			
7/14/2015	70300	TOTAL DISSOLVED SOLIDS		220	1000	0	500	MG/L			
7/14/2015	71900	MERCURY		0	2	1	2	UG/L			
7/14/2015	82079	TURBIDITY, LABORATORY		0.12	5	0.1	5	NTU			
5/18/2015	1045	IRON	<	0	300	100	300	UG/L			
5/18/2015	1055	MANGANESE		21	50	20	50	UG/L			
2/9/2015	1045	IRON	<	0	300	100	300	UG/L			
2/9/2015	1055	MANGANESE	<	0	50	20	50	UG/L			
11/1/2014	1045	IRON	<	0	300	100	300	UG/L			
11/1/2014	1055	MANGANESE		35	50	20	50	UG/L			
10/28/2014	1032	CHROMIUM, HEXAVALENT	<	0	10	1	10	UG/L			
8/1/2014	1045	IRON		0	300	100	300	UG/L			
8/1/2014	1055	MANGANESE		34	50	20	50	UG/L			
7/21/2014	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L			
5/5/2014	1045	IRON	<	0	300	100	300	UG/L			
5/5/2014	1055	MANGANESE		33	50	20	50	UG/L			
2/9/2014	1045	IRON	<	0	300	100	300	UG/L			
2/9/2014	1055	MANGANESE		160	50	20	50	UG/L			
	_ 300			- 00				- 0, 2			

1/10/2014	95	SPECIFIC CONDUCTANCE		330	1600	0	900	US
1/10/2014	1059	THALLIUM	<	0	2	1	2	UG/L
1/10/2014	1067	NICKEL	<	0	100	10	100	UG/L
1/10/2014	1097	ANTIMONY	<	0	6	6	6	UG/L
1/10/2014	A-031	PERCHLORATE	<	0	6	4	4	UG/L
11/1/2013	1045	IRON	<	0	300	100	300	UG/L
11/1/2013	1055	MANGANESE		63	50	20	50	UG/L
8/5/2013	1045	IRON	<	0	300	100	300	UG/L
8/5/2013	1055	MANGANESE		35	50	20	50	UG/L
5/10/2013	1045	IRON	<	0	300	100	300	UG/L
5/10/2013	1055	MANGANESE		38	50	20	50	UG/L
11/14/2012	1045	IRON	<	0	300	100	300	UG/L
11/14/2012	1055	MANGANESE		79	50	20	50	UG/L
7/24/2012	81	COLOR	<	3	15	0	15	UNITS
7/24/2012	86	ODOR THRESHOLD @ 60 C	<	0	3	1	3	TON
7/24/2012	95	SPECIFIC CONDUCTANCE		280	1600	0	900	US
7/24/2012	95	SPECIFIC CONDUCTANCE		290	1600	0	900	US
7/24/2012	403	PH, LABORATORY		7.3	0	0	0	
7/24/2012	410	ALKALINITY (TOTAL) AS CACO3		100	0	0	0	MG/L
7/24/2012	440	BICARBONATE ALKALINITY		100	0	0	0	MG/L
7/24/2012	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
7/24/2012	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
7/24/2012	900	HARDNESS (TOTAL) AS CACO3		130	0	0	0	MG/L
7/24/2012	916	CALCIUM		39	0	0	0	MG/L
7/24/2012	927	MAGNESIUM		7.7	0	0	0	MG/L
7/24/2012	929	SODIUM		8.5	0	0	0	MG/L
7/24/2012	940	CHLORIDE		7	500	0	250	MG/L
7/24/2012	945	SULFATE		32	500	0.5	250	MG/L
7/24/2012	951	FLUORIDE (F) (NATURAL- SOURCE)		0.12	2	0.1	2	MG/L
7/24/2012	1002	ARSENIC	<	0	10	2	5	UG/L
7/24/2012	1007	BARIUM	<	0	1000	100	1000	UG/L
7/24/2012	1012	BERYLLIUM	<	0	4	1	4	UG/L
7/24/2012	1027	CADMIUM	<	0	5	1	5	UG/L
7/24/2012	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
7/24/2012	1042	COPPER	<	0	1000	50	1000	UG/L
7/24/2012	1042	IRON	<	0	300	100	300	UG/L
7/24/2012	1043	LEAD	<	0	0	5	15	UG/L
7/24/2012	1051	MANGANESE		78	50	20	50	UG/L
1/24/2012	1033	MANUAINESE		70	50	20	1 30	L UU/L

7/24/2012	1077	SILVER	<	0	100	10	100	UG/L
7/24/2012	1092	ZINC	<	0	5000	50	5000	UG/L
7/24/2012	1105	ALUMINUM	<	0	1000	50	200	UG/L
7/24/2012	1147	SELENIUM	<	0	50	5	50	UG/L
7/24/2012	1501	GROSS ALPHA	<	0	15	3	5	PCI/L
7/24/2012	1502	GROSS ALPHA COUNTING ERROR		0.11	0	0	0	PCI/L
7/24/2012	32101	BROMODICHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
7/24/2012	32102	CARBON TETRACHLORIDE	<	0	0.5	0.5	0.5	UG/L
7/24/2012	32104	BROMOFORM (THM)	<	0	0	1	0	UG/L
7/24/2012	32105	DIBROMOCHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
7/24/2012	32106	CHLOROFORM (THM)	<	0	0	1	0	UG/L
7/24/2012	34010	TOLUENE	<	0	150	0.5	0.5	UG/L
7/24/2012	34030	BENZENE	<	0	1	0.5	0.5	UG/L
7/24/2012	34301	MONOCHLOROBENZENE	<	0	70	0.5	0.5	UG/L
7/24/2012	34311	CHLOROETHANE	<	0	0	0.5	0.5	UG/L
7/24/2012	34371	ETHYLBENZENE	<	0	300	0.5	0.5	UG/L
7/24/2012	34391	HEXACHLOROBUTADIENE	<	0	0	0.5	0.5	UG/L
7/24/2012	34413	BROMOMETHANE	<	0	0	0.5	0.5	UG/L
7/24/2012	34418	CHLOROMETHANE	<	0	0	0.5	0.5	UG/L
7/24/2012	34423	DICHLOROMETHANE	<	0	5	0.5	0.5	UG/L
7/24/2012	34475	TETRACHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
7/24/2012	34488	TRICHLOROFLUOROMETH ANE	<	0	150	5	5	UG/L
7/24/2012	34496	1,1-DICHLOROETHANE	<	0	5	0.5	0.5	UG/L
7/24/2012	34501	1,1-DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
7/24/2012	34506	1,1,1-TRICHLOROETHANE	<	0	200	0.5	0.5	UG/L
7/24/2012	34511	1,1,2-TRICHLOROETHANE	<	0	5	0.5	0.5	UG/L
7/24/2012	34516	1,1,2,2- TETRACHLOROETHANE	<	0	1	0.5	0.5	UG/L
7/24/2012	34531	1,2-DICHLOROETHANE	<	0	0.5	0.5	0.5	UG/L
7/24/2012	34536	1,2-DICHLOROBENZENE	<	0	600	0.5	0.5	UG/L
7/24/2012	34541	1,2-DICHLOROPROPANE	<	0	5	0.5	0.5	UG/L
7/24/2012	34546	TRANS-1,2- DICHLOROETHYLENE	<	0	10	0.5	0.5	UG/L
7/24/2012	34551	1,2,4-TRICHLOROBENZENE	<	0	5	0.5	5	UG/L

		1.2 DICHLODODDODENE						
7/24/2012	34561	1,3-DICHLOROPROPENE (TOTAL)	<	0	0.5	0.5	0.5	UG/L
7/24/2012	34566	1,3-DICHLOROBENZENE	<	0	0	0.5	600	UG/L
7/24/2012	34571	1,4-DICHLOROBENZENE	<	0	5	0.5	0.5	UG/L
7/24/2012	34668	DICHLORODIFLUOROMETH ANE (FREON 12)	<	0	1000	0.5	1000	UG/L
7/24/2012	34696	NAPHTHALENE	<	0	170	0.5	170	UG/L
7/24/2012	34699	TRANS-1,3- DICHLOROPROPENE	<	0.5	0.5	0.5	0	UG/L
7/24/2012	34704	CIS-1,3-DICHLOROPROPENE	<	0.5	0.5	0.5	0.5	UG/L
7/24/2012	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L
7/24/2012	39175	VINYL CHLORIDE	<	0	0.5	0.5	0.5	UG/L
7/24/2012	39180	TRICHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
7/24/2012	46491	METHYL-TERT-BUTYL- ETHER (MTBE)	<	0	13	3	3	UG/L
7/24/2012	70300	TOTAL DISSOLVED SOLIDS		190	1000	0	500	MG/L
7/24/2012	71814	LANGELIER INDEX AT SOURCE TEMP.	-	0.45	0	0	0	
7/24/2012	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
7/24/2012	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
7/24/2012	71900	MERCURY	<	0	2	1	2	UG/L
7/24/2012	77035	TERT-BUTYL ALCOHOL (TBA)	<	15	12	2	12	UG/L
7/24/2012	77093	CIS-1,2- DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
7/24/2012	77128	STYRENE	<	0	100	0.5	0.5	UG/L
7/24/2012	77135	O-XYLENE	<	0	0	0.5	0	UG/L
7/24/2012	77168	1,1-DICHLOROPROPENE	<	0	0	0.5	0.5	UG/L
7/24/2012	77170	2,2-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
7/24/2012	77173	1,3-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
7/24/2012	77222	1,2,4-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
7/24/2012	77223	ISOPROPYLBENZENE	<	0	770	0.5	770	UG/L
7/24/2012	77224	N-PROPYLBENZENE	<	0	260	0.5	260	UG/L
7/24/2012	77226	1,3,5-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
7/24/2012	77350	SEC-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
7/24/2012	77353	TERT-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
7/24/2012	77443	1,2,3-TRICHLOROPROPANE (1,2,3,-TCP)	<	0.5	0.005	0.005	0.005	UG/L
7/24/2012	77562	1,1,1,2- TETRACHLOROETHANE	<	0	0	0.5	0.5	UG/L

7/24/2012	77596	DIBROMOMETHANE	<	0	0	0.5	0.5	UG/L
7/24/2012	77613	1,2,3-TRICHLOROBENZENE	<	0	0	0.5	0.5	UG/L
7/24/2012	81551	XYLENES (TOTAL)	<	0	1750	0	1750	UG/L
7/24/2012	81555	BROMOBENZENE	<	0	0	0.5	0.5	UG/L
7/24/2012	81611	TRICHLOROTRIFLUOROET HANE (FREON 113)	<	0	1200	10	10	UG/L
7/24/2012	82079	TURBIDITY, LABORATORY	<	0.05	5	0.1	5	NTU
7/24/2012	82080	TOTAL TRIHALOMETHANES	<	0	80	0	80	UG/L
7/24/2012	A-008	2-CHLOROTOLUENE	<	0	140	0.5	0.5	UG/L
7/24/2012	A-009	4-CHLOROTOLUENE	<	0	140	0.5	140	UG/L
7/24/2012	A-010	N-BUTYLBENZENE	<	0	260	0.5	70	UG/L
7/24/2012	A-011	P-ISOPROPYLTOLUENE	<	0.5	0	0	0	UG/L
7/24/2012	A-012	BROMOCHLOROMETHANE	<	0	0	0.5	0.5	UG/L
7/24/2012	A-014	M,P-XYLENE	<	0	0	0.5	0	UG/L
7/24/2012	A-029	NITRATE + NITRITE (AS N)	<	0	10	0.4	5	mg/L
7/24/2012	A-031	PERCHLORATE	<	0	6	4	4	UG/L
7/24/2012	A-033	ETHYL-TERT-BUTYL ETHER	<	0	0	3	0	UG/L
7/24/2012	A-034	TERT-AMYL-METHYL ETHER	<	0	0	3	0	UG/L
7/24/2012	A-036	DIISOPROPYL ETHER	<	0	0	3	0	UG/L
7/24/2012	A-072	GROSS ALPHA MDA95		1.16	3	0	0	PCI/L

Greenbriar Well - Raw (1210022-041)								
Sampling Date	Storet Number	Group/Constituent Identification	XMOD	Result	MCL	DLR	Trigger	Unit
11/2/2015	1045	IRON		0	300	100	300	UG/L
11/2/2015	1055	MANGANESE		0	50	20	50	UG/L
7/13/2015	618	NITRATE (as N)		0	10	0.4	5	mg/L
5/9/2015	1045	IRON	<	0	300	100	300	UG/L
5/9/2015	1055	MANGANESE	<	0	50	20	50	UG/L
2/5/2015	1045	IRON	<	0	300	100	300	UG/L
2/5/2015	1055	MANGANESE	<	0	50	20	50	UG/L
11/3/2014	1045	IRON	<	0	300	100	300	UG/L
11/3/2014	1055	MANGANESE	<	0	50	20	50	UG/L
10/27/2014	1032	CHROMIUM, HEXAVALENT		0	10	1	10	UG/L
8/8/2014	1045	IRON		0	300	100	300	UG/L

8/8/2014	1055	MANGANESE		T 0	50	20	50	UG/L
7/14/2014	71850	NITRATE (AS NO3)	<	0	45	20	23	MG/L
5/3/2014	1045	IRON	<	0	300	100	300	UG/L
5/3/2014	1045	MANGANESE	<	0	50	20	50	UG/L
2/3/2014	1035	IRON	<	0	300	100	300	UG/L
2/3/2014	1045	MANGANESE	<	0	50	20	50	UG/L
11/4/2013	1035	IRON	<	0	300	100	300	UG/L
11/4/2013	1045	MANGANESE	<	0	50	20	50	UG/L
8/12/2013	1035	IRON		0	300	100	300	UG/L
8/12/2013	1045	MANGANESE		0	50	20	50	UG/L
7/26/2011	81	COLOR		7.5	15	0	15	UNITS
7/20/2011	01	COLOR		7.5	13		13	CIVIIS
7/26/2011	86	ODOR THRESHOLD @ 60 C		0	3	1	3	TON
7/26/2011	95	SPECIFIC CONDUCTANCE		250	1600	0	900	US
7/26/2011	403	PH, LABORATORY		7.6	0	0	0	
7/26/2011	410	ALKALINITY (TOTAL) AS CACO3		110	0	0	0	MG/L
7/26/2011	440	BICARBONATE ALKALINITY		110	0	0	0	MG/L
7/26/2011	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
7/26/2011	620	NITRITE (AS N)		0	1	0.4	0.5	mg/L
7/26/2011	900	HARDNESS (TOTAL) AS CACO3		110	0	0	0	MG/L
7/26/2011	916	CALCIUM		35	0	0	0	MG/L
7/26/2011	927	MAGNESIUM		5.3	0	0	0	MG/L
7/26/2011	929	SODIUM		10	0	0	0	MG/L
7/26/2011	937	POTASSIUM	<	2	0	0	0	MG/L
7/26/2011	940	CHLORIDE		5.3	500	0	250	MG/L
7/26/2011	945	SULFATE		14	500	0.5	250	MG/L
7/26/2011	951	FLUORIDE (F) (NATURAL- SOURCE)		0.12	2	0.1	2	MG/L
7/26/2011	1002	ARSENIC		0	10	2	5	UG/L
7/26/2011	1007	BARIUM		110	1000	100	1000	UG/L
7/26/2011	1012	BERYLLIUM		0	4	1	4	UG/L
7/26/2011	1027	CADMIUM		0	5	1	5	UG/L
7/26/2011	1034	CHROMIUM (TOTAL)		0	50	10	50	UG/L
7/26/2011	1042	COPPER		0	1000	50	1000	UG/L
7/26/2011	1045	IRON		450	300	100	300	UG/L
7/26/2011	1051	LEAD		0	0	5	15	UG/L
7/26/2011	1055	MANGANESE		33	50	20	50	UG/L
7/26/2011	1059	THALLIUM		0	2	1	2	UG/L
7/26/2011	1067	NICKEL		0	100	10	100	UG/L
7/26/2011	1077	SILVER		0	100	10	100	UG/L
7/26/2011	1092	ZINC		0	5000	50	5000	UG/L
7/26/2011	1097	ANTIMONY		0	6	6	6	UG/L

7/26/2011	1105	ALUMINUM	360	1000	50	200	UG/L
7/26/2011	1147	SELENIUM	0	50	5	50	UG/L
7/26/2011	32101	BROMODICHLOROMETHAN E (THM)	0	0	1	0	UG/L
7/26/2011	32102	CARBON TETRACHLORIDE	0	0.5	0.5	0.5	UG/L
7/26/2011	32104	BROMOFORM (THM)	0	0	1	0	UG/L
7/26/2011	32105	DIBROMOCHLOROMETHAN E (THM)	0	0	1	0	UG/L
7/26/2011	32106	CHLOROFORM (THM)	0	0	1	0	UG/L
7/26/2011	34010	TOLUENE	0	150	0.5	0.5	UG/L
7/26/2011	34030	BENZENE	0	1	0.5	0.5	UG/L
7/26/2011	34301	MONOCHLOROBENZENE	0	70	0.5	0.5	UG/L
7/26/2011	34311	CHLOROETHANE	0	0	0.5	0.5	UG/L
7/26/2011	34371	ETHYLBENZENE	0	300	0.5	0.5	UG/L
7/26/2011	34391	HEXACHLOROBUTADIENE	0	0	0.5	0.5	UG/L
7/26/2011	34413	BROMOMETHANE	0	0	0.5	0.5	UG/L
7/26/2011	34418	CHLOROMETHANE	0	0	0.5	0.5	UG/L
7/26/2011	34423	DICHLOROMETHANE	0	5	0.5	0.5	UG/L
7/26/2011	34475	TETRACHLOROETHYLENE	0	5	0.5	0.5	UG/L
7/26/2011	34488	TRICHLOROFLUOROMETH ANE	0	150	5	5	UG/L
7/26/2011	34496	1,1-DICHLOROETHANE	0	5	0.5	0.5	UG/L
7/26/2011	34501	1,1-DICHLOROETHYLENE	0	6	0.5	0.5	UG/L
7/26/2011	34506	1,1,1-TRICHLOROETHANE	0	200	0.5	0.5	UG/L
7/26/2011	34511	1,1,2-TRICHLOROETHANE	0	5	0.5	0.5	UG/L
7/26/2011	34516	1,1,2,2- TETRACHLOROETHANE	0	1	0.5	0.5	UG/L
7/26/2011	34531	1,2-DICHLOROETHANE	0	0.5	0.5	0.5	UG/L
7/26/2011	34536	1,2-DICHLOROBENZENE	0	600	0.5	0.5	UG/L
7/26/2011	34541	1,2-DICHLOROPROPANE	0	5	0.5	0.5	UG/L
7/26/2011	34546	TRANS-1,2- DICHLOROETHYLENE	0	10	0.5	0.5	UG/L
7/26/2011	34551	1,2,4-TRICHLOROBENZENE	0	5	0.5	5	UG/L
7/26/2011	34561	1,3-DICHLOROPROPENE (TOTAL)	0	0.5	0.5	0.5	UG/L
7/26/2011	34566	1,3-DICHLOROBENZENE	0	0	0.5	600	UG/L
7/26/2011	34571	1,4-DICHLOROBENZENE	0	5	0.5	0.5	UG/L
7/26/2011	34668	DICHLORODIFLUOROMETH ANE (FREON 12)	0	1000	0.5	1000	UG/L

7/26/2011	34696	NAPHTHALENE		0	170	0.5	170	UG/L
7/26/2011	34699	TRANS-1,3- DICHLOROPROPENE	<	0.5	0.5	0.5	0	UG/L
7/26/2011	34704	CIS-1,3-DICHLOROPROPENE	<	0.5	0.5	0.5	0.5	UG/L
7/26/2011	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L
7/26/2011	39175	VINYL CHLORIDE		0	0.5	0.5	0.5	UG/L
7/26/2011	39180	TRICHLOROETHYLENE		0	5	0.5	0.5	UG/L
7/26/2011	46491	METHYL-TERT-BUTYL- ETHER (MTBE)		0	13	3	3	UG/L
7/26/2011	70300	TOTAL DISSOLVED SOLIDS		160	1000	0	500	MG/L
7/26/2011	71814	LANGELIER INDEX AT SOURCE TEMP.		-0.18	0	0	0	
7/26/2011	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
7/26/2011	71900	MERCURY		0	2	1	2	UG/L
7/26/2011	77093	CIS-1,2- DICHLOROETHYLENE		0	6	0.5	0.5	UG/L
7/26/2011	77128	STYRENE		0	100	0.5	0.5	UG/L
7/26/2011	77135	O-XYLENE		0	0	0.5	0	UG/L
7/26/2011	77168	1,1-DICHLOROPROPENE		0	0	0.5	0.5	UG/L
7/26/2011	77170	2,2-DICHLOROPROPANE		0	0	0.5	0.5	UG/L
7/26/2011	77173	1,3-DICHLOROPROPANE		0	0	0.5	0.5	UG/L
7/26/2011	77222	1,2,4-TRIMETHYLBENZENE		0	330	0.5	330	UG/L
7/26/2011	77223	ISOPROPYLBENZENE		0	770	0.5	770	UG/L
7/26/2011	77224	N-PROPYLBENZENE		0	260	0.5	260	UG/L
7/26/2011	77226	1,3,5-TRIMETHYLBENZENE		0	330	0.5	330	UG/L
7/26/2011	77350	SEC-BUTYLBENZENE		0	260	0.5	0.5	UG/L
7/26/2011	77353	TERT-BUTYLBENZENE		0	260	0.5	0.5	UG/L
7/26/2011	77562	1,1,1,2- TETRACHLOROETHANE		0	0	0.5	0.5	UG/L
7/26/2011	77596	DIBROMOMETHANE		0	0	0.5	0.5	UG/L
7/26/2011	77613	1,2,3-TRICHLOROBENZENE		0	0	0.5	0.5	UG/L
7/26/2011	81551	XYLENES (TOTAL)		0	1750	0	1750	UG/L
7/26/2011	81555	BROMOBENZENE		0	0	0.5	0.5	UG/L
7/26/2011	81611	TRICHLOROTRIFLUOROET HANE (FREON 113)		0	1200	10	10	UG/L
7/26/2011	82079	TURBIDITY, LABORATORY		15	5	0.1	5	NTU
7/26/2011	82080	TOTAL TRIHALOMETHANES		0	80	0	80	UG/L
7/26/2011	A-008	2-CHLOROTOLUENE		0	140	0.5	0.5	UG/L

7/26/2011	A-009	4-CHLOROTOLUENE		0	140	0.5	140	UG/L
7/26/2011	A-010	N-BUTYLBENZENE		0	260	0.5	70	UG/L
7/26/2011	A-011	P-ISOPROPYLTOLUENE	<	0.5	0	0	0	UG/L
7/26/2011	A-012	BROMOCHLOROMETHANE		0	0	0.5	0.5	UG/L
7/26/2011	A-014	M,P-XYLENE		0	0	0.5	0	UG/L
7/26/2011	A-033	ETHYL-TERT-BUTYL ETHER		0	0	3	0	UG/L
7/26/2011	A-034	TERT-AMYL-METHYL ETHER		0	0	3	0	UG/L
7/26/2011	A-036	DIISOPROPYL ETHER		0	0	3	0	UG/L

		Rick Well # 2 - Ray	v (12100	22-043)				
Sampling Date	Storet Number	Group/Constituent Identification	XMOD	Result	MCL	DLR	Trigger	Unit
11/6/2015	1045	IRON		0	300	100	300	UG/L
11/6/2015	1055	MANGANESE		0	50	20	50	UG/L
10/6/2015	618	NITRATE (as N)		0	10	0.4	5	mg/L
5/15/2015	1045	IRON	<	0	300	100	300	UG/L
5/15/2015	1055	MANGANESE	<	0	50	20	50	UG/L
2/2/2015	1045	IRON	<	0	300	100	300	UG/L
2/2/2015	1055	MANGANESE	<	0	50	20	50	UG/L
11/3/2014	1045	IRON	<	0	300	100	300	UG/L
11/3/2014	1055	MANGANESE	<	0	50	20	50	UG/L
10/27/2014	1032	CHROMIUM, HEXAVALENT	<	0	10	1	10	UG/L
10/27/2014	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
8/8/2014	1045	IRON		0	300	100	300	UG/L
8/8/2014	1055	MANGANESE		0	50	20	50	UG/L
5/1/2014	1045	IRON	<	0	300	100	300	UG/L
5/1/2014	1055	MANGANESE	<	0	50	20	50	UG/L
2/7/2014	1045	IRON	<	0	300	100	300	UG/L
2/7/2014	1055	MANGANESE	<	0	50	20	50	UG/L
11/13/2013	1045	IRON	<	0	300	100	300	UG/L
11/13/2013	1055	MANGANESE	<	0	50	20	50	UG/L
2/25/2013	81	COLOR	<	3	15	0	15	UNITS
2/25/2013	86	ODOR THRESHOLD @ 60 C		0	3	1	3	TON
2/25/2013	95	SPECIFIC CONDUCTANCE		260	1600	0	900	US
2/25/2013	403	PH, LABORATORY		7.8	0	0	0	

2/25/2013	410	ALKALINITY (TOTAL) AS CACO3		100	0	0	0	MG/L
2/25/2013	440	BICARBONATE ALKALINITY		100	0	0	0	MG/L
2/25/2013	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
2/25/2013	620	NITRITE (AS N)		0	1	0.4	0.5	mg/L
2/25/2013	940	CHLORIDE		6.2	500	0	250	MG/L
2/25/2013	945	SULFATE		24	500	0.5	250	MG/L
2/25/2013	951	FLUORIDE (F) (NATURAL- SOURCE)		0.13	2	0.1	2	MG/L
2/25/2013	32101	BROMODICHLOROMETHAN E (THM)		0	0	1	0	UG/L
2/25/2013	32102	CARBON TETRACHLORIDE		0	0.5	0.5	0.5	UG/L
2/25/2013	32104	BROMOFORM (THM)		0	0	1	0	UG/L
2/25/2013	32105	DIBROMOCHLOROMETHAN E (THM)		0	0	1	0	UG/L
2/25/2013	32106	CHLOROFORM (THM)		0	0	1	0	UG/L
2/25/2013	34010	TOLUENE		0	150	0.5	0.5	UG/L
2/25/2013	34030	BENZENE		0	1	0.5	0.5	UG/L
2/25/2013	34301	MONOCHLOROBENZENE		0	70	0.5	0.5	UG/L
2/25/2013	34311	CHLOROETHANE		0	0	0.5	0.5	UG/L
2/25/2013	34371	ETHYLBENZENE		0	300	0.5	0.5	UG/L
2/25/2013	34391	HEXACHLOROBUTADIENE		0	0	0.5	0.5	UG/L
2/25/2013	34413	BROMOMETHANE		0	0	0.5	0.5	UG/L
2/25/2013	34418	CHLOROMETHANE		0	0	0.5	0.5	UG/L
2/25/2013	34423	DICHLOROMETHANE		0	5	0.5	0.5	UG/L
2/25/2013	34475	TETRACHLOROETHYLENE		0	5	0.5	0.5	UG/L
2/25/2013	34488	TRICHLOROFLUOROMETH ANE		0	150	5	5	UG/L
2/25/2013	34496	1,1-DICHLOROETHANE		0	5	0.5	0.5	UG/L
2/25/2013	34501	1,1-DICHLOROETHYLENE		0	6	0.5	0.5	UG/L
2/25/2013	34506	1,1,1-TRICHLOROETHANE		0	200	0.5	0.5	UG/L
2/25/2013	34511	1,1,2-TRICHLOROETHANE		0	5	0.5	0.5	UG/L
2/25/2013	34516	1,1,2,2- TETRACHLOROETHANE		0	1	0.5	0.5	UG/L
2/25/2013	34531	1,2-DICHLOROETHANE		0	0.5	0.5	0.5	UG/L
2/25/2013	34536	1,2-DICHLOROBENZENE		0	600	0.5	0.5	UG/L
2/25/2013	34541	1,2-DICHLOROPROPANE		0	5	0.5	0.5	UG/L

	1	TED ANG 10					l	
2/25/2013	34546	TRANS-1,2- DICHLOROETHYLENE		0	10	0.5	0.5	UG/L
2/25/2013	34551	1,2,4-TRICHLOROBENZENE		0	5	0.5	5	UG/L
2/25/2013	34561	1,3-DICHLOROPROPENE (TOTAL)		0	0.5	0.5	0.5	UG/L
2/25/2013	34566	1,3-DICHLOROBENZENE		0	0	0.5	600	UG/L
2/25/2013	34571	1,4-DICHLOROBENZENE		0	5	0.5	0.5	UG/L
2/25/2013	34668	DICHLORODIFLUOROMETH ANE (FREON 12)		0	1000	0.5	1000	UG/L
2/25/2013	34696	NAPHTHALENE		0	170	0.5	170	UG/L
2/25/2013	34699	TRANS-1,3- DICHLOROPROPENE	<	0.5	0.5	0.5	0	UG/L
2/25/2013	34704	CIS-1,3-DICHLOROPROPENE	<	0.5	0.5	0.5	0.5	UG/L
2/25/2013	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L
2/25/2013	39175	VINYL CHLORIDE		0	0.5	0.5	0.5	UG/L
2/25/2013	39180	TRICHLOROETHYLENE		0	5	0.5	0.5	UG/L
2/25/2013	46491	METHYL-TERT-BUTYL- ETHER (MTBE)		0	13	3	3	UG/L
2/25/2013	70300	TOTAL DISSOLVED SOLIDS		170	1000	0	500	MG/L
2/25/2013	71814	LANGELIER INDEX AT SOURCE TEMP.		-0.0061	0	0	0	
2/25/2013	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
2/25/2013	77093	CIS-1,2- DICHLOROETHYLENE		0	6	0.5	0.5	UG/L
2/25/2013	77128	STYRENE		0	100	0.5	0.5	UG/L
2/25/2013	77135	O-XYLENE		0	0	0.5	0	UG/L
2/25/2013	77168	1,1-DICHLOROPROPENE		0	0	0.5	0.5	UG/L
2/25/2013	77170	2,2-DICHLOROPROPANE		0	0	0.5	0.5	UG/L
2/25/2013	77173	1,3-DICHLOROPROPANE		0	0	0.5	0.5	UG/L
2/25/2013	77222	1,2,4-TRIMETHYLBENZENE		0	330	0.5	330	UG/L
2/25/2013	77223	ISOPROPYLBENZENE		0	770	0.5	770	UG/L
2/25/2013	77224	N-PROPYLBENZENE		0	260	0.5	260	UG/L
2/25/2013	77226	1,3,5-TRIMETHYLBENZENE		0	330	0.5	330	UG/L
2/25/2013	77350	SEC-BUTYLBENZENE		0	260	0.5	0.5	UG/L
2/25/2013	77353	TERT-BUTYLBENZENE		0	260	0.5	0.5	UG/L
2/25/2013	77562	1,1,1,2- TETRACHLOROETHANE		0	0	0.5	0.5	UG/L
2/25/2013	77596	DIBROMOMETHANE		0	0	0.5	0.5	UG/L
2/25/2013	77613	1,2,3-TRICHLOROBENZENE		0	0	0.5	0.5	UG/L

2/25/2013	81551	XYLENES (TOTAL)		0	1750	0	1750	UG/L
2/25/2013	81555	BROMOBENZENE		0	0	0.5	0.5	UG/L
2/25/2013	81611	TRICHLOROTRIFLUOROET HANE (FREON 113)		0	1200	10	10	UG/L
2/25/2013	82079	TURBIDITY, LABORATORY		1.1	5	0.1	5	NTU
2/25/2013	82080	TOTAL TRIHALOMETHANES		0	80	0	80	UG/L
2/25/2013	A-008	2-CHLOROTOLUENE		0	140	0.5	0.5	UG/L
2/25/2013	A-009	4-CHLOROTOLUENE		0	140	0.5	140	UG/L
2/25/2013	A-010	N-BUTYLBENZENE		0	260	0.5	70	UG/L
2/25/2013	A-011	P-ISOPROPYLTOLUENE	<	0.5	0	0	0	UG/L
2/25/2013	A-012	BROMOCHLOROMETHANE		0	0	0.5	0.5	UG/L
2/25/2013	A-014	M,P-XYLENE		0	0	0.5	0	UG/L
2/25/2013	A-033	ETHYL-TERT-BUTYL ETHER		0	0	3	0	UG/L
2/25/2013	A-034	TERT-AMYL-METHYL ETHER		0	0	3	0	UG/L
2/25/2013	A-036	DIISOPROPYL ETHER		0	0	3	0	UG/L

	Lot W #2 Well - Raw (1210022-044)										
Sampling Date	Storet Number	Group/Constituent Identification	XMOD	Result	MCL	DLR	Trigger	Unit			
12/7/2015	618	NITRATE (as N)		0	10	0.4	5	mg/L			
12/7/2015	620	NITRITE (AS N)		0	1	0.4	0.5	mg/L			
11/5/2015	1045	IRON		440	300	100	300	UG/L			
11/5/2015	1055	MANGANESE		96	50	20	50	UG/L			
5/8/2015	1045	IRON		440	300	100	300	UG/L			
5/8/2015	1055	MANGANESE		91	50	20	50	UG/L			
2/3/2015	1045	IRON		300	300	100	300	UG/L			
2/3/2015	1055	MANGANESE		92	50	20	50	UG/L			
12/9/2014	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L			
11/13/2014	1045	IRON		450	300	100	300	UG/L			
11/13/2014	1055	MANGANESE		94	50	20	50	UG/L			
10/28/2014	1032	CHROMIUM, HEXAVALENT	<	0	10	1	10	UG/L			
8/4/2014	1045	IRON		390	300	100	300	UG/L			
8/4/2014	1055	MANGANESE		97	50	20	50	UG/L			
5/2/2014	1045	IRON		390	300	100	300	UG/L			
5/2/2014	1055	MANGANESE		89	50	20	50	UG/L			
2/3/2014	1045	IRON		400	300	100	300	UG/L			

2/3/2014	1055	MANGANESE		98	50	20	50	UG/L
12/17/2013	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
11/8/2013	1045	IRON		400	300	100	300	UG/L
11/8/2013	1055	MANGANESE		99	50	20	50	UG/L
9/10/2013	81	COLOR		3	15	0	15	UNITS
9/10/2013	86	ODOR THRESHOLD @ 60 C		1	3	1	3	TON
9/10/2013	95	SPECIFIC CONDUCTANCE		190	1600	0	900	US
9/10/2013	403	PH, LABORATORY		6.7	0	0	0	1
9/10/2013	410	ALKALINITY (TOTAL) AS CACO3		71	0	0	0	MG/L
9/10/2013	440	BICARBONATE ALKALINITY		71	0	0	0	MG/L
9/10/2013	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
9/10/2013	620	NITRITE (AS N)		0	1	0.4	0.5	mg/L
9/10/2013	900	HARDNESS (TOTAL) AS CACO3		96	0	0	0	MG/L
9/10/2013	916	CALCIUM		27	0	0	0	MG/L
9/10/2013	927	MAGNESIUM		7.2	0	0	0	MG/L
9/10/2013	929	SODIUM		8.5	0	0	0	MG/L
9/10/2013	937	POTASSIUM		0.98	0	0	0	MG/L
9/10/2013	940	CHLORIDE		6.6	500	0	250	MG/L
9/10/2013	945	SULFATE		24	500	0.5	250	MG/L
9/10/2013	951	FLUORIDE (F) (NATURAL- SOURCE)		0.13	2	0.1	2	MG/L
9/10/2013	1002	ARSENIC		0	10	2	5	UG/L
9/10/2013	1007	BARIUM		0	1000	100	1000	UG/L
9/10/2013	1012	BERYLLIUM		0	4	1	4	UG/L
9/10/2013	1027	CADMIUM		0	5	1	5	UG/L
9/10/2013	1034	CHROMIUM (TOTAL)		0	50	10	50	UG/L
9/10/2013	1042	COPPER		0	1000	50	1000	UG/L
9/10/2013	1045	IRON		470	300	100	300	UG/L
9/10/2013	1051	LEAD		0	0	5	15	UG/L
9/10/2013	1055	MANGANESE		78	50	20	50	UG/L
9/10/2013	1059	THALLIUM		0	2	1	2	UG/L
9/10/2013	1067	NICKEL		0	100	10	100	UG/L
9/10/2013	1077	SILVER		0	100	10	100	UG/L
9/10/2013	1092	ZINC		0	5000	50	5000	UG/L
9/10/2013	1097	ANTIMONY		0	6	6	6	UG/L
9/10/2013	1105	ALUMINUM		0	1000	50	200	UG/L
9/10/2013	1147	SELENIUM		0	50	5	50	UG/L
9/10/2013	32101	BROMODICHLOROMETHAN E (THM)		0	0	1	0	UG/L
9/10/2013	32102	CARBON TETRACHLORIDE		0	0.5	0.5	0.5	UG/L

9/10/2013	32104	BROMOFORM (THM)		0	0	1	0	UG/L
9/10/2013	32105	DIBROMOCHLOROMETHAN E (THM)		0	0	1	0	UG/L
9/10/2013	32106	CHLOROFORM (THM)		0	0	1	0	UG/L
9/10/2013	34010	TOLUENE		0	150	0.5	0.5	UG/L
9/10/2013	34030	BENZENE		0	1	0.5	0.5	UG/L
9/10/2013	34301	MONOCHLOROBENZENE		0	70	0.5	0.5	UG/L
9/10/2013	34311	CHLOROETHANE		0	0	0.5	0.5	UG/L
9/10/2013	34371	ETHYLBENZENE		0	300	0.5	0.5	UG/L
9/10/2013	34391	HEXACHLOROBUTADIENE		0	0	0.5	0.5	UG/L
9/10/2013	34413	BROMOMETHANE		0	0	0.5	0.5	UG/L
9/10/2013	34418	CHLOROMETHANE		0	0	0.5	0.5	UG/L
9/10/2013	34423	DICHLOROMETHANE		0	5	0.5	0.5	UG/L
9/10/2013	34475	TETRACHLOROETHYLENE		0	5	0.5	0.5	UG/L
9/10/2013	34488	TRICHLOROFLUOROMETH ANE		0	150	5	5	UG/L
9/10/2013	34496	1,1-DICHLOROETHANE		0	5	0.5	0.5	UG/L
9/10/2013	34501	1,1-DICHLOROETHYLENE		0	6	0.5	0.5	UG/L
9/10/2013	34506	1,1,1-TRICHLOROETHANE		0	200	0.5	0.5	UG/L
9/10/2013	34511	1,1,2-TRICHLOROETHANE		0	5	0.5	0.5	UG/L
9/10/2013	34516	1,1,2,2- TETRACHLOROETHANE		0	1	0.5	0.5	UG/L
9/10/2013	34531	1,2-DICHLOROETHANE		0	0.5	0.5	0.5	UG/L
9/10/2013	34536	1,2-DICHLOROBENZENE		0	600	0.5	0.5	UG/L
9/10/2013	34541	1,2-DICHLOROPROPANE		0	5	0.5	0.5	UG/L
9/10/2013	34546	TRANS-1,2- DICHLOROETHYLENE		0	10	0.5	0.5	UG/L
9/10/2013	34551	1,2,4-TRICHLOROBENZENE		0	5	0.5	5	UG/L
9/10/2013	34561	1,3-DICHLOROPROPENE (TOTAL)		0	0.5	0.5	0.5	UG/L
9/10/2013	34566	1,3-DICHLOROBENZENE		0	0	0.5	600	UG/L
9/10/2013	34571	1,4-DICHLOROBENZENE		0	5	0.5	0.5	UG/L
9/10/2013	34668	DICHLORODIFLUOROMETH ANE (FREON 12)		0	1000	0.5	1000	UG/L
9/10/2013	34696	NAPHTHALENE		0	170	0.5	170	UG/L
9/10/2013	34699	TRANS-1,3- DICHLOROPROPENE	<	0.5	0.5	0.5	0	UG/L
9/10/2013	34704	CIS-1,3-DICHLOROPROPENE	<	0.5	0.5	0.5	0.5	UG/L

9/10/2013	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L
9/10/2013	39175	VINYL CHLORIDE		0	0.5	0.5	0.5	UG/L
9/10/2013	39180	TRICHLOROETHYLENE		0	5	0.5	0.5	UG/L
9/10/2013	46491	METHYL-TERT-BUTYL- ETHER (MTBE)		0	13	3	3	UG/L
9/10/2013	70300	TOTAL DISSOLVED SOLIDS		140	1000	0	500	MG/L
9/10/2013	71814	LANGELIER INDEX AT SOURCE TEMP.		-1.4	0	0	0	
9/10/2013	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
9/10/2013	71900	MERCURY		0	2	1	2	UG/L
9/10/2013	77093	CIS-1,2- DICHLOROETHYLENE		0	6	0.5	0.5	UG/L
9/10/2013	77128	STYRENE		0	100	0.5	0.5	UG/L
9/10/2013	77135	O-XYLENE		0	0	0.5	0	UG/L
9/10/2013	77168	1,1-DICHLOROPROPENE		0	0	0.5	0.5	UG/L
9/10/2013	77170	2,2-DICHLOROPROPANE		0	0	0.5	0.5	UG/L
9/10/2013	77173	1,3-DICHLOROPROPANE		0	0	0.5	0.5	UG/L
9/10/2013	77222	1,2,4-TRIMETHYLBENZENE		0	330	0.5	330	UG/L
9/10/2013	77223	ISOPROPYLBENZENE		0	770	0.5	770	UG/L
9/10/2013	77224	N-PROPYLBENZENE		0	260	0.5	260	UG/L
9/10/2013	77226	1,3,5-TRIMETHYLBENZENE		0	330	0.5	330	UG/L
9/10/2013	77350	SEC-BUTYLBENZENE		0	260	0.5	0.5	UG/L
9/10/2013	77353	TERT-BUTYLBENZENE		0	260	0.5	0.5	UG/L
9/10/2013	77562	1,1,1,2- TETRACHLOROETHANE		0	0	0.5	0.5	UG/L
9/10/2013	77596	DIBROMOMETHANE		0	0	0.5	0.5	UG/L
9/10/2013	77613	1,2,3-TRICHLOROBENZENE		0	0	0.5	0.5	UG/L
9/10/2013	81551	XYLENES (TOTAL)		0	1750	0	1750	UG/L
9/10/2013	81555	BROMOBENZENE		0	0	0.5	0.5	UG/L
9/10/2013	81611	TRICHLOROTRIFLUOROET HANE (FREON 113)		0	1200	10	10	UG/L
9/10/2013	82079	TURBIDITY, LABORATORY		2.3	5	0.1	5	NTU
9/10/2013	82080	TOTAL TRIHALOMETHANES		0	80	0	80	UG/L
9/10/2013	A-008	2-CHLOROTOLUENE		0	140	0.5	0.5	UG/L
9/10/2013	A-009	4-CHLOROTOLUENE		0	140	0.5	140	UG/L
9/10/2013	A-010	N-BUTYLBENZENE		0	260	0.5	70	UG/L
9/10/2013	A-011	P-ISOPROPYLTOLUENE	<	0.5	0	0	0	UG/L
9/10/2013	A-012	BROMOCHLOROMETHANE		0	0	0.5	0.5	UG/L

9/10/2013	A-014	M,P-XYLENE	0	0	0.5	0	UG/L
9/10/2013	A-033	ETHYL-TERT-BUTYL ETHER	0	0	3	0	UG/L
9/10/2013	A-034	TERT-AMYL-METHYL ETHER	0	0	3	0	UG/L
9/10/2013	A-036	DIISOPROPYL ETHER	0	0	3	0	UG/L

		Persons Well - Ray	w (12100)22-045)				
Sampling Date	Storet Number	Group/Constituent Identification	XMOD	Result	MCL	DLR	Trigger	Unit
12/14/2015	618	NITRATE (as N)		0	10	0.4	5	mg/L
12/14/2015	620	NITRITE (AS N)		0	1	0.4	0.5	mg/L
11/20/2015	1045	IRON		0	300	100	300	UG/L
11/20/2015	1055	MANGANESE		0	50	20	50	UG/L
5/8/2015	1045	IRON	<	0	300	100	300	UG/L
5/8/2015	1055	MANGANESE	<	0	50	20	50	UG/L
2/2/2015	1045	IRON	<	0	300	100	300	UG/L
2/2/2015	1055	MANGANESE	<	0	50	20	50	UG/L
11/3/2014	1045	IRON	<	0	300	100	300	UG/L
11/3/2014	1055	MANGANESE	<	0	50	20	50	UG/L
10/27/2014	1032	CHROMIUM, HEXAVALENT	<	0	10	1	10	UG/L
10/27/2014	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
10/23/2012	81	COLOR		80	15	0	15	UNITS
10/23/2012	86	ODOR THRESHOLD @ 60 C		1	3	1	3	TON
10/23/2012	95	SPECIFIC CONDUCTANCE		200	1600	0	900	US
10/23/2012	403	PH, LABORATORY		8.6	0	0	0	
10/23/2012	410	ALKALINITY (TOTAL) AS CACO3		60	0	0	0	MG/L
10/23/2012	440	BICARBONATE ALKALINITY		57	0	0	0	MG/L
10/23/2012	445	CARBONATE ALKALINITY		3.4	0	0	0	MG/L
10/23/2012	618	NITRATE (as N)		0	10	0.4	5	mg/L
10/23/2012	620	NITRITE (AS N)		0	1	0.4	0.5	mg/L
10/23/2012	940	CHLORIDE		7.7	500	0	250	MG/L
10/23/2012	945	SULFATE		35	500	0.5	250	MG/L
10/23/2012	951	FLUORIDE (F) (NATURAL- SOURCE)		0.16	2	0.1	2	MG/L
10/23/2012	32101	BROMODICHLOROMETHAN E (THM)		0	0	1	0	UG/L

10/23/2012	32102	CARBON TETRACHLORIDE		0	0.5	0.5	0.5	UG/L
10/23/2012	32104	BROMOFORM (THM)		0	0	1	0	UG/L
10/23/2012	32105	DIBROMOCHLOROMETHAN E (THM)		0	0	1	0	UG/L
10/23/2012	32106	CHLOROFORM (THM)		0	0	1	0	UG/L
10/23/2012	34010	TOLUENE		0	150	0.5	0.5	UG/L
10/23/2012	34030	BENZENE		0	1	0.5	0.5	UG/L
10/23/2012	34301	MONOCHLOROBENZENE		0	70	0.5	0.5	UG/L
10/23/2012	34311	CHLOROETHANE		0	0	0.5	0.5	UG/L
10/23/2012	34371	ETHYLBENZENE		0	300	0.5	0.5	UG/L
10/23/2012	34391	HEXACHLOROBUTADIENE		0	0	0.5	0.5	UG/L
10/23/2012	34413	BROMOMETHANE		0	0	0.5	0.5	UG/L
10/23/2012	34418	CHLOROMETHANE		0	0	0.5	0.5	UG/L
10/23/2012	34423	DICHLOROMETHANE		0	5	0.5	0.5	UG/L
10/23/2012	34475	TETRACHLOROETHYLENE		0	5	0.5	0.5	UG/L
10/23/2012	34488	TRICHLOROFLUOROMETH ANE		0	150	5	5	UG/L
10/23/2012	34496	1,1-DICHLOROETHANE		0	5	0.5	0.5	UG/L
10/23/2012	34501	1,1-DICHLOROETHYLENE		0	6	0.5	0.5	UG/L
10/23/2012	34506	1,1,1-TRICHLOROETHANE		0	200	0.5	0.5	UG/L
10/23/2012	34511	1,1,2-TRICHLOROETHANE		0	5	0.5	0.5	UG/L
10/23/2012	34516	1,1,2,2- TETRACHLOROETHANE		0	1	0.5	0.5	UG/L
10/23/2012	34531	1,2-DICHLOROETHANE		0	0.5	0.5	0.5	UG/L
10/23/2012	34536	1,2-DICHLOROBENZENE		0	600	0.5	0.5	UG/L
10/23/2012	34541	1,2-DICHLOROPROPANE		0	5	0.5	0.5	UG/L
10/23/2012	34546	TRANS-1,2- DICHLOROETHYLENE		0	10	0.5	0.5	UG/L
10/23/2012	34551	1,2,4-TRICHLOROBENZENE		0	5	0.5	5	UG/L
10/23/2012	34561	1,3-DICHLOROPROPENE (TOTAL)		0	0.5	0.5	0.5	UG/L
10/23/2012	34566	1,3-DICHLOROBENZENE		0	0	0.5	600	UG/L
10/23/2012	34571	1,4-DICHLOROBENZENE		0	5	0.5	0.5	UG/L
10/23/2012	34668	DICHLORODIFLUOROMETH ANE (FREON 12)		0	1000	0.5	1000	UG/L
10/23/2012	34696	NAPHTHALENE		0	170	0.5	170	UG/L
10/23/2012	34699	TRANS-1,3- DICHLOROPROPENE	<	0.5	0.5	0.5	0	UG/L

				1			1	
10/23/2012	34704	CIS-1,3-DICHLOROPROPENE	<	0.5	0.5	0.5	0.5	UG/L
10/23/2012	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L
10/23/2012	39175	VINYL CHLORIDE		0	0.5	0.5	0.5	UG/L
10/23/2012	39180	TRICHLOROETHYLENE		0	5	0.5	0.5	UG/L
10/23/2012	46491	METHYL-TERT-BUTYL- ETHER (MTBE)		0	13	3	3	UG/L
10/23/2012	70300	TOTAL DISSOLVED SOLIDS		130	1000	0	500	MG/L
10/23/2012	71814	LANGELIER INDEX AT SOURCE TEMP.		0.36	0	0	0	
10/23/2012	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
10/23/2012	77093	CIS-1,2- DICHLOROETHYLENE		0	6	0.5	0.5	UG/L
10/23/2012	77128	STYRENE		0	100	0.5	0.5	UG/L
10/23/2012	77135	O-XYLENE		0	0	0.5	0	UG/L
10/23/2012	77168	1,1-DICHLOROPROPENE		0	0	0.5	0.5	UG/L
10/23/2012	77170	2,2-DICHLOROPROPANE		0	0	0.5	0.5	UG/L
10/23/2012	77173	1,3-DICHLOROPROPANE		0	0	0.5	0.5	UG/L
10/23/2012	77222	1,2,4-TRIMETHYLBENZENE		0	330	0.5	330	UG/L
10/23/2012	77223	ISOPROPYLBENZENE		0	770	0.5	770	UG/L
10/23/2012	77224	N-PROPYLBENZENE		0	260	0.5	260	UG/L
10/23/2012	77226	1,3,5-TRIMETHYLBENZENE		0	330	0.5	330	UG/L
10/23/2012	77350	SEC-BUTYLBENZENE		0	260	0.5	0.5	UG/L
10/23/2012	77353	TERT-BUTYLBENZENE		0	260	0.5	0.5	UG/L
10/23/2012	77562	1,1,1,2- TETRACHLOROETHANE		0	0	0.5	0.5	UG/L
10/23/2012	77596	DIBROMOMETHANE		0	0	0.5	0.5	UG/L
10/23/2012	77613	1,2,3-TRICHLOROBENZENE		0	0	0.5	0.5	UG/L
10/23/2012	81551	XYLENES (TOTAL)		0	1750	0	1750	UG/L
10/23/2012	81555	BROMOBENZENE		0	0	0.5	0.5	UG/L
10/23/2012	81611	TRICHLOROTRIFLUOROET HANE (FREON 113)		0	1200	10	10	UG/L
10/23/2012	82079	TURBIDITY, LABORATORY		72	5	0.1	5	NTU
10/23/2012	82080	TOTAL TRIHALOMETHANES		0	80	0	80	UG/L
10/23/2012	A-008	2-CHLOROTOLUENE		0	140	0.5	0.5	UG/L
10/23/2012	A-009	4-CHLOROTOLUENE		0	140	0.5	140	UG/L
10/23/2012	A-010	N-BUTYLBENZENE		0	260	0.5	70	UG/L
10/23/2012	A-011	P-ISOPROPYLTOLUENE	<	0.5	0	0	0	UG/L

10/23/2012	A-012	BROMOCHLOROMETHANE	0	0	0.5	0.5	UG/L
10/23/2012	A-014	M,P-XYLENE	0	0	0.5	0	UG/L
10/23/2012	A-029	NITRATE + NITRITE (AS N)	0	10	0.4	5	mg/L
10/23/2012	A-033	ETHYL-TERT-BUTYL ETHER	0	0	3	0	UG/L
10/23/2012	A-034	TERT-AMYL-METHYL ETHER	0	0	3	0	UG/L
10/23/2012	A-036	DIISOPROPYL ETHER	0	0	3	0	UG/L

		Humboldt Loop Well	- Raw (12	210022-	046)			
Sampling Date	Storet Number	Group/Constituent Identification	XMOD	Result	MCL	DLR	Trigger	Unit
12/28/2015	618	NITRATE (as N)		0	10	0.4	5	mg/L
12/28/2015	620	NITRITE (AS N)		0	1	0.4	0.5	mg/L
4/22/2014	81	COLOR	<	3	15	0	15	UNITS
4/22/2014	86	ODOR THRESHOLD @ 60 C		0	3	1	3	TON
4/22/2014	95	SPECIFIC CONDUCTANCE		320	1600	0	900	US
4/22/2014	403	PH, LABORATORY		7	0	0	0	
4/22/2014	410	ALKALINITY (TOTAL) AS CACO3		110	0	0	0	MG/L
4/22/2014	440	BICARBONATE ALKALINITY		110	0	0	0	MG/L
4/22/2014	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
4/22/2014	618	NITRATE (as N)		0	10	0.4	5	mg/L
4/22/2014	620	NITRITE (AS N)		0	1	0.4	0.5	mg/L
4/22/2014	900	HARDNESS (TOTAL) AS CACO3		94	0	0	0	MG/L
4/22/2014	916	CALCIUM		28	0	0	0	MG/L
4/22/2014	927	MAGNESIUM		6.1	0	0	0	MG/L
4/22/2014	929	SODIUM		23	0	0	0	MG/L
4/22/2014	937	POTASSIUM		2	0	0	0	MG/L
4/22/2014	940	CHLORIDE		25	500	0	250	MG/L
4/22/2014	945	SULFATE		13	500	0.5	250	MG/L
4/22/2014	951	FLUORIDE (F) (NATURAL- SOURCE)		0.1	2	0.1	2	MG/L
4/22/2014	1002	ARSENIC		0	10	2	5	UG/L
4/22/2014	1007	BARIUM		130	1000	100	1000	UG/L
4/22/2014	1012	BERYLLIUM		0	4	1	4	UG/L

4/00/0014	1007	CADAMINA		T ~	1	T ~	TIC/I
4/22/2014	1027	CADMIUM	0	5	1	5	UG/L
4/22/2014	1034	CHROMIUM (TOTAL)	0	50	10	50	UG/L
4/22/2014	1042	COPPER	0	1000	50	1000	UG/L
4/22/2014	1045	IRON	0	300	100	300	UG/L
4/22/2014	1051	LEAD	0	0	5	15	UG/L
4/22/2014	1055	MANGANESE	130	50	20	50	UG/L
4/22/2014	1059	THALLIUM	0	2	1	2	UG/L
4/22/2014	1067	NICKEL	0	100	10	100	UG/L
4/22/2014	1077	SILVER	0	100	10	100	UG/L
4/22/2014	1092	ZINC	0	5000	50	5000	UG/L
4/22/2014	1097	ANTIMONY	0	6	6	6	UG/L
4/22/2014	1105	ALUMINUM	95	1000	50	200	UG/L
4/22/2014	1147	SELENIUM	0	50	5	50	UG/L
4/22/2014	32101	BROMODICHLOROMETHAN E (THM)	0	0	1	0	UG/L
4/22/2014	32102	CARBON TETRACHLORIDE	0	0.5	0.5	0.5	UG/L
4/22/2014	32104	BROMOFORM (THM)	0	0	1	0	UG/L
4/22/2014	32105	DIBROMOCHLOROMETHAN E (THM)	0	0	1	0	UG/L
4/22/2014	32106	CHLOROFORM (THM)	0	0	1	0	UG/L
4/22/2014	34010	TOLUENE	0.86	150	0.5	0.5	UG/L
4/22/2014	34030	BENZENE	0	1	0.5	0.5	UG/L
4/22/2014	34301	MONOCHLOROBENZENE	0	70	0.5	0.5	UG/L
4/22/2014	34311	CHLOROETHANE	0	0	0.5	0.5	UG/L
4/22/2014	34371	ETHYLBENZENE	0	300	0.5	0.5	UG/L
4/22/2014	34391	HEXACHLOROBUTADIENE	0	0	0.5	0.5	UG/L
4/22/2014	34413	BROMOMETHANE	0	0	0.5	0.5	UG/L
4/22/2014	34418	CHLOROMETHANE	0	0	0.5	0.5	UG/L
4/22/2014	34423	DICHLOROMETHANE	0	5	0.5	0.5	UG/L
4/22/2014	34475	TETRACHLOROETHYLENE	0	5	0.5	0.5	UG/L
4/22/2014	34488	TRICHLOROFLUOROMETH ANE	0	150	5	5	UG/L
4/22/2014	34496	1,1-DICHLOROETHANE	0	5	0.5	0.5	UG/L
4/22/2014	34501	1,1-DICHLOROETHYLENE	0	6	0.5	0.5	UG/L
4/22/2014	34506	1,1,1-TRICHLOROETHANE	0	200	0.5	0.5	UG/L
4/22/2014	34511	1,1,2-TRICHLOROETHANE	0	5	0.5	0.5	UG/L
4/22/2014	34516	1,1,2,2- TETRACHLOROETHANE	0	1	0.5	0.5	UG/L
4/22/2014	34531	1,2-DICHLOROETHANE	0	0.5	0.5	0.5	UG/L
4/22/2014	34536	1,2-DICHLOROBENZENE	0	600	0.5	0.5	UG/L

4/22/2014	34541	1,2-DICHLOROPROPANE		0	5	0.5	0.5	UG/L
4/22/2014	34546	TRANS-1,2- DICHLOROETHYLENE		0	10	0.5	0.5	UG/L
4/22/2014	34551	1,2,4-TRICHLOROBENZENE		0	5	0.5	5	UG/L
4/22/2014	34561	1,3-DICHLOROPROPENE (TOTAL)		0	0.5	0.5	0.5	UG/L
4/22/2014	34566	1,3-DICHLOROBENZENE		0	0	0.5	600	UG/L
4/22/2014	34571	1,4-DICHLOROBENZENE		0	5	0.5	0.5	UG/L
4/22/2014	34668	DICHLORODIFLUOROMETH ANE (FREON 12)		0	1000	0.5	1000	UG/L
4/22/2014	34696	NAPHTHALENE		0	170	0.5	170	UG/L
4/22/2014	34699	TRANS-1,3- DICHLOROPROPENE	<	0.5	0.5	0.5	0	UG/L
4/22/2014	34704	CIS-1,3-DICHLOROPROPENE	<	0.5	0.5	0.5	0.5	UG/L
4/22/2014	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L
4/22/2014	39175	VINYL CHLORIDE		0	0.5	0.5	0.5	UG/L
4/22/2014	39180	TRICHLOROETHYLENE		0	5	0.5	0.5	UG/L
4/22/2014	46491	METHYL-TERT-BUTYL- ETHER (MTBE)		0	13	3	3	UG/L
4/22/2014	70300	TOTAL DISSOLVED SOLIDS		190	1000	0	500	MG/L
4/22/2014	71814	LANGELIER INDEX AT SOURCE TEMP.		-0.88	0	0	0	
4/22/2014	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
4/22/2014	71900	MERCURY		0	2	1	2	UG/L
4/22/2014	77093	CIS-1,2- DICHLOROETHYLENE		0	6	0.5	0.5	UG/L
4/22/2014	77128	STYRENE		0	100	0.5	0.5	UG/L
4/22/2014	77135	O-XYLENE		0	0	0.5	0	UG/L
4/22/2014	77168	1,1-DICHLOROPROPENE		0	0	0.5	0.5	UG/L
4/22/2014	77170	2,2-DICHLOROPROPANE		0	0	0.5	0.5	UG/L
4/22/2014	77173	1,3-DICHLOROPROPANE		0	0	0.5	0.5	UG/L
4/22/2014	77222	1,2,4-TRIMETHYLBENZENE		0	330	0.5	330	UG/L
4/22/2014	77223	ISOPROPYLBENZENE		0	770	0.5	770	UG/L
4/22/2014	77224	N-PROPYLBENZENE		0	260	0.5	260	UG/L
4/22/2014	77226	1,3,5-TRIMETHYLBENZENE		0	330	0.5	330	UG/L
4/22/2014	77350	SEC-BUTYLBENZENE		0	260	0.5	0.5	UG/L
4/22/2014	77353	TERT-BUTYLBENZENE		0	260	0.5	0.5	UG/L
4/22/2014	77562	1,1,1,2- TETRACHLOROETHANE		0	0	0.5	0.5	UG/L
4/22/2014	77596	DIBROMOMETHANE		0	0	0.5	0.5	UG/L

4/22/2014	77613	1,2,3-TRICHLOROBENZENE		0	0	0.5	0.5	UG/L
4/22/2014	81551	XYLENES (TOTAL)		0	1750	0	1750	UG/L
4/22/2014	81555	BROMOBENZENE		0	0	0.5	0.5	UG/L
4/22/2014	81611	TRICHLOROTRIFLUOROET HANE (FREON 113)		0	1200	10	10	UG/L
4/22/2014	82079	TURBIDITY, LABORATORY		2.9	5	0.1	5	NTU
4/22/2014	82080	TOTAL TRIHALOMETHANES		0	80	0	80	UG/L
4/22/2014	A-008	2-CHLOROTOLUENE		0	140	0.5	0.5	UG/L
4/22/2014	A-009	4-CHLOROTOLUENE		0	140	0.5	140	UG/L
4/22/2014	A-010	N-BUTYLBENZENE		0	260	0.5	70	UG/L
4/22/2014	A-011	P-ISOPROPYLTOLUENE	<	0.5	0	0	0	UG/L
4/22/2014	A-012	BROMOCHLOROMETHANE		0	0	0.5	0.5	UG/L
4/22/2014	A-014	M,P-XYLENE		0	0	0.5	0	UG/L
4/22/2014	A-029	NITRATE + NITRITE (AS N)		0	10	0.4	5	mg/L
4/22/2014	A-033	ETHYL-TERT-BUTYL ETHER		0	0	3	0	UG/L
4/22/2014	A-034	TERT-AMYL-METHYL ETHER		0	0	3	0	UG/L
4/22/2014	A-036	DIISOPROPYL ETHER		0	0	3	0	UG/L

		Seafoam Well - Ra	w (1210	022-047)			
Sampling Date	Storet Number	Group/Constituent Identification	XMOD	Result	MCL	DLR	Trigger	Unit
12/28/2015	618	NITRATE (as N)		0	10	0.4	5	mg/L
12/28/2015	620	NITRITE (AS N)		0	1	0.4	0.5	mg/L
10/21/2014	81	COLOR		3	15	0	15	UNITS
10/21/2014	86	ODOR THRESHOLD @ 60 C		0	3	1	3	TON
10/21/2014	95	SPECIFIC CONDUCTANCE		190	1600	0	900	US
10/21/2014	403	PH, LABORATORY		7.1	0	0	0	
10/21/2014	410	ALKALINITY (TOTAL) AS CACO3		72	0	0	0	MG/L
10/21/2014	440	BICARBONATE ALKALINITY		71	0	0	0	MG/L
10/21/2014	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L

10/21/2014	618	NITRATE (as N)	0	10	0.4	5	mg/L
10/21/2014	620	NITRITE (AS N)	0	10	0.4	0.5	mg/L mg/L
10/21/2014	900	HARDNESS (TOTAL) AS CACO3	39	0	0	0	MG/L
10/21/2014	916	CALCIUM	11	0	0	0	MG/L
10/21/2014	927	MAGNESIUM	3	0	0	0	MG/L
10/21/2014	929	SODIUM	20	0	0	0	MG/L
10/21/2014	937	POTASSIUM	1.1	0	0	0	MG/L
10/21/2014	940	CHLORIDE	13	500	0	250	MG/L
10/21/2014	945	SULFATE	5.9	500	0.5	250	MG/L
10/21/2014	951	FLUORIDE (F) (NATURAL- SOURCE)	0.51	2	0.1	2	MG/L
10/21/2014	1002	ARSENIC	2.9	10	2	5	UG/L
10/21/2014	1007	BARIUM	0	1000	100	1000	UG/L
10/21/2014	1012	BERYLLIUM	0	4	1	4	UG/L
10/21/2014	1027	CADMIUM	0	5	1	5	UG/L
10/21/2014	1034	CHROMIUM (TOTAL)	0	50	10	50	UG/L
10/21/2014	1042	COPPER	0	1000	50	1000	UG/L
10/21/2014	1045	IRON	140	300	100	300	UG/L
10/21/2014	1051 1055	LEAD MANGANESE	23	50	5 20	15 50	UG/L UG/L
10/21/2014	1055	THALLIUM	0	2	1	2	UG/L UG/L
10/21/2014	1067	NICKEL	0	100	10	100	UG/L
10/21/2014	1077	SILVER	0	100	10	100	UG/L
10/21/2014	1092	ZINC	0	5000	50	5000	UG/L
10/21/2014	1097	ANTIMONY	0	6	6	6	UG/L
10/21/2014	1105	ALUMINUM	190	1000	50	200	UG/L
10/21/2014	1147	SELENIUM	0	50	5	50	UG/L
10/21/2014	32101	BROMODICHLOROMETHAN E (THM)	0	0	1	0	UG/L
10/21/2014	32102	CARBON TETRACHLORIDE	0	0.5	0.5	0.5	UG/L
10/21/2014	32104	BROMOFORM (THM)	0	0	1	0	UG/L
10/21/2014	32105	DIBROMOCHLOROMETHAN E (THM)	0	0	1	0	UG/L
10/21/2014	32106	CHLOROFORM (THM)	0	0	1	0	UG/L
10/21/2014	34010	TOLUENE	0	150	0.5	0.5	UG/L
10/21/2014	34030	BENZENE	0	1	0.5	0.5	UG/L
10/21/2014	34301	MONOCHLOROBENZENE	0	70	0.5	0.5	UG/L
10/21/2014	34311	CHLOROETHANE	0	0	0.5	0.5	UG/L
10/21/2014	34371	ETHYLBENZENE	0	300	0.5	0.5	UG/L
10/21/2014	34391	HEXACHLOROBUTADIENE	0	0	0.5	0.5	UG/L
10/21/2014	34413	BROMOMETHANE	0	0	0.5	0.5	UG/L
10/21/2014	34418	CHLOROMETHANE	0	0	0.5	0.5	UG/L
10/21/2014	34423	DICHLOROMETHANE	0	5	0.5	0.5	UG/L

								1
10/21/2014	34475	TETRACHLOROETHYLENE		0	5	0.5	0.5	UG/L
10/21/2014	34488	TRICHLOROFLUOROMETH ANE		0	150	5	5	UG/L
10/21/2014	34496	1,1-DICHLOROETHANE		0	5	0.5	0.5	UG/L
10/21/2014	34501	1,1-DICHLOROETHYLENE		0	6	0.5	0.5	UG/L
10/21/2014	34506	1,1,1-TRICHLOROETHANE		0	200	0.5	0.5	UG/L
10/21/2014	34511	1,1,2-TRICHLOROETHANE		0	5	0.5	0.5	UG/L
10/21/2014	34516	1,1,2,2- TETRACHLOROETHANE		0	1	0.5	0.5	UG/L
10/21/2014	34531	1,2-DICHLOROETHANE		0	0.5	0.5	0.5	UG/L
10/21/2014	34536	1,2-DICHLOROBENZENE		0	600	0.5	0.5	UG/L
10/21/2014	34541	1,2-DICHLOROPROPANE		0	5	0.5	0.5	UG/L
10/21/2014	34546	TRANS-1,2- DICHLOROETHYLENE		0	10	0.5	0.5	UG/L
10/21/2014	34551	1,2,4-TRICHLOROBENZENE		0	5	0.5	5	UG/L
10/21/2014	34561	1,3-DICHLOROPROPENE (TOTAL)		0	0.5	0.5	0.5	UG/L
10/21/2014	34566	1,3-DICHLOROBENZENE		0	0	0.5	600	UG/L
10/21/2014	34571	1,4-DICHLOROBENZENE		0	5	0.5	0.5	UG/L
10/21/2014	34668	DICHLORODIFLUOROMETH ANE (FREON 12)		0	1000	0.5	1000	UG/L
10/21/2014	34696	NAPHTHALENE		0	170	0.5	170	UG/L
10/21/2014	34699	TRANS-1,3- DICHLOROPROPENE	<	0.5	0.5	0.5	0	UG/L
10/21/2014	34704	CIS-1,3-DICHLOROPROPENE	<	0.5	0.5	0.5	0.5	UG/L
10/21/2014	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L
10/21/2014	39175	VINYL CHLORIDE		0	0.5	0.5	0.5	UG/L
10/21/2014	39180	TRICHLOROETHYLENE		0	5	0.5	0.5	UG/L
10/21/2014	46491	METHYL-TERT-BUTYL- ETHER (MTBE)		0	13	3	3	UG/L
10/21/2014	70300	TOTAL DISSOLVED SOLIDS		140	1000	0	500	MG/L
10/21/2014	71814	LANGELIER INDEX AT SOURCE TEMP.		-1.4	0	0	0	
10/21/2014	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
10/21/2014	71900	MERCURY		0	2	1	2	UG/L
10/21/2014	77093	CIS-1,2- DICHLOROETHYLENE		0	6	0.5	0.5	UG/L
10/21/2014	77128	STYRENE		0	100	0.5	0.5	UG/L

10/21/2014	77135	O-XYLENE		0	0	0.5	0	UG/L
10/21/2014	77168	1,1-DICHLOROPROPENE		0	0	0.5	0.5	UG/L
10/21/2014	77170	2,2-DICHLOROPROPANE		0	0	0.5	0.5	UG/L
10/21/2014	77173	1,3-DICHLOROPROPANE		0	0	0.5	0.5	UG/L
10/21/2014	77222	1,2,4-TRIMETHYLBENZENE		0	330	0.5	330	UG/L
10/21/2014	77223	ISOPROPYLBENZENE		0	770	0.5	770	UG/L
10/21/2014	77224	N-PROPYLBENZENE		0	260	0.5	260	UG/L
10/21/2014	77226	1,3,5-TRIMETHYLBENZENE		0	330	0.5	330	UG/L
10/21/2014	77350	SEC-BUTYLBENZENE		0	260	0.5	0.5	UG/L
10/21/2014	77353	TERT-BUTYLBENZENE		0	260	0.5	0.5	UG/L
10/21/2014	77562	1,1,1,2- TETRACHLOROETHANE		0	0	0.5	0.5	UG/L
10/21/2014	77596	DIBROMOMETHANE		0	0	0.5	0.5	UG/L
10/21/2014	77613	1,2,3-TRICHLOROBENZENE		0	0	0.5	0.5	UG/L
10/21/2014	81551	XYLENES (TOTAL)		0	1750	0	1750	UG/L
10/21/2014	81555	BROMOBENZENE		0	0	0.5	0.5	UG/L
10/21/2014	81611	TRICHLOROTRIFLUOROET HANE (FREON 113)		0	1200	10	10	UG/L
10/21/2014	82079	TURBIDITY, LABORATORY		3.5	5	0.1	5	NTU
10/21/2014	82080	TOTAL TRIHALOMETHANES		0	80	0	80	UG/L
10/21/2014	A-008	2-CHLOROTOLUENE		0	140	0.5	0.5	UG/L
10/21/2014	A-009	4-CHLOROTOLUENE		0	140	0.5	140	UG/L
10/21/2014	A-010	N-BUTYLBENZENE		0	260	0.5	70	UG/L
10/21/2014	A-011	P-ISOPROPYLTOLUENE	<	0.5	0	0	0	UG/L
10/21/2014	A-012	BROMOCHLOROMETHANE		0	0	0.5	0.5	UG/L
10/21/2014	A-014	M,P-XYLENE		0	0	0.5	0	UG/L
10/21/2014	A-029	NITRATE + NITRITE (AS N)		0	10	0.4	5	mg/L
10/21/2014	A-033	ETHYL-TERT-BUTYL ETHER		0	0	3	0	UG/L
10/21/2014	A-034	TERT-AMYL-METHYL ETHER		0	0	3	0	UG/L
10/21/2014	A-036	DIISOPROPYL ETHER		0	0	3	0	UG/L

		Telegraph Creek - R	aw (121	0022-00	4)			
Sampling Date	Storet Number	Group/Constituent Identification	XMOD	Result	MCL	DLR	Trigger	Unit
11/17/2015	410	ALKALINITY (TOTAL) AS CACO3		82	0	0	0	MG/L
11/17/2015	680	TOTAL ORGANIC CARBON (TOC)		1.5	0	0.3	0	MG/L
10/6/2015	1032	CHROMIUM, HEXAVALENT	<	0	10	1	10	UG/L
8/3/2015	410	ALKALINITY (TOTAL) AS CACO3		84	0	0	0	MG/L
8/3/2015	680	TOTAL ORGANIC CARBON (TOC)		0.66	0	0.3	0	MG/L
5/5/2015	410	ALKALINITY (TOTAL) AS CACO3		71	0	0	0	MG/L
5/5/2015	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
5/5/2015	680	TOTAL ORGANIC CARBON (TOC)		0.5	0	0.3	0	MG/L
4/14/2015	95	SPECIFIC CONDUCTANCE		200	1600	0	900	US
4/14/2015	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
4/14/2015	A-031	PERCHLORATE	<	0	6	4	4	UG/L
2/17/2015	410	ALKALINITY (TOTAL) AS CACO3		61	0	0	0	MG/L
2/17/2015	680	TOTAL ORGANIC CARBON (TOC)		0.61	0	0.3	0	MG/L
11/12/2014	410	ALKALINITY (TOTAL) AS CACO3		75	0	0	0	MG/L
11/12/2014	680	TOTAL ORGANIC CARBON (TOC)		0.89	0	0.3	0	MG/L
10/28/2014	1032	CHROMIUM, HEXAVALENT	<	0	10	1	10	UG/L
5/6/2014	410	ALKALINITY (TOTAL) AS CACO3		68	0	0	0	MG/L
5/6/2014	680	TOTAL ORGANIC CARBON (TOC)		0.71	0	0.3	0	MG/L
4/8/2014	95	SPECIFIC CONDUCTANCE		170	1600	0	900	US
4/8/2014	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
4/8/2014	A-031	PERCHLORATE	<	0	6	4	4	UG/L
2/25/2014	410	ALKALINITY (TOTAL) AS CACO3		56	0	0	0	MG/L
2/25/2014	680	TOTAL ORGANIC CARBON (TOC)		0.63	0	0.3	0	MG/L

					1			
11/26/2013	410	ALKALINITY (TOTAL) AS CACO3		78	0	0	0	MG/L
11/26/2013	680	TOTAL ORGANIC CARBON (TOC)		0.92	0	0.3	0	MG/L
8/20/2013	410	ALKALINITY (TOTAL) AS CACO3		80	0	0	0	MG/L
8/20/2013	680	TOTAL ORGANIC CARBON (TOC)		0.64	0	0.3	0	MG/L
6/4/2013	410	ALKALINITY (TOTAL) AS CACO3		71	0	0	0	MG/L
6/4/2013	680	TOTAL ORGANIC CARBON (TOC)		0.56	0	0.3	0	MG/L
4/3/2013	95	SPECIFIC CONDUCTANCE		200	1600	0	900	US
4/3/2013	A-031	PERCHLORATE	<	0	6	4	4	UG/L
4/2/2013	1105	ALUMINUM	<	0	1000	50	200	UG/L
4/2/2013	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
2/26/2013	410	ALKALINITY (TOTAL) AS CACO3		64	0	0	0	MG/L
2/26/2013	680	TOTAL ORGANIC CARBON (TOC)		0.44	0	0.3	0	MG/L
11/27/2012	410	ALKALINITY (TOTAL) AS CACO3		68	0	0	0	MG/L
11/27/2012	680	TOTAL ORGANIC CARBON (TOC)		1.1	0	0.3	0	MG/L
8/7/2012	410	ALKALINITY (TOTAL) AS CACO3		70	0	0	0	MG/L
8/7/2012	680	TOTAL ORGANIC CARBON (TOC)		0.53	0	0.3	0	MG/L
7/5/2012	11501	RADIUM 228	<	0	0	1	0	
7/5/2012	11502	RADIUM 228 COUNTING ERROR		0.585	0	0	0	PCI/L
7/5/2012	A-075	RADIUM 228 MDA95		0.203	1	0	0	PCI/L
5/8/2012	410	ALKALINITY (TOTAL) AS CACO3		59	0	0	0	MG/L
5/8/2012	680	TOTAL ORGANIC CARBON (TOC)		0.52	0	0.3	0	MG/L
5/1/2012	81	COLOR		5	15	0	15	UNITS
5/1/2012	86	ODOR THRESHOLD @ 60 C	<	0	3	1	3	TON
5/1/2012	95	SPECIFIC CONDUCTANCE		170	1600	0	900	US
5/1/2012	403	PH, LABORATORY		7.7	0	0	0	
5/1/2012	410	ALKALINITY (TOTAL) AS CACO3		56	0	0	0	MG/L
5/1/2012	440	BICARBONATE ALKALINITY		56	0	0	0	MG/L

5/1/2012	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
5/1/2012	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
5/1/2012	900	HARDNESS (TOTAL) AS CACO3		64	0	0	0	MG/L
5/1/2012	916	CALCIUM		19	0	0	0	MG/L
5/1/2012	927	MAGNESIUM		4	0	0	0	MG/L
5/1/2012	929	SODIUM		7.2	0	0	0	MG/L
5/1/2012	937	POTASSIUM	<	2	0	0	0	MG/L
5/1/2012	940	CHLORIDE		6.6	500	0	250	MG/L
5/1/2012	945	SULFATE		15	500	0.5	250	MG/L
5/1/2012	951	FLUORIDE (F) (NATURAL- SOURCE)		0.12	2	0.1	2	MG/L
5/1/2012	1002	ARSENIC	<	0	10	2	5	UG/L
5/1/2012	1007	BARIUM	<	0	1000	100	1000	UG/L
5/1/2012	1012	BERYLLIUM	<	0	4	1	4	UG/L
5/1/2012	1027	CADMIUM	<	0	5	1	5	UG/L
5/1/2012	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
5/1/2012	1042	COPPER	<	0	1000	50	1000	UG/L
5/1/2012	1045	IRON		360	300	100	300	UG/L
5/1/2012	1051	LEAD	<	0	0	5	15	UG/L
5/1/2012	1055	MANGANESE	<	0	50	20	50	UG/L
5/1/2012	1059	THALLIUM	<	0	2	1	2	UG/L
5/1/2012	1067	NICKEL	<	0	100	10	100	UG/L
5/1/2012	1077	SILVER	<	0	100	10	100	UG/L
5/1/2012	1092	ZINC	<	0	5000	50	5000	UG/L
5/1/2012	1097	ANTIMONY	<	0	6	6	6	UG/L
5/1/2012	1105	ALUMINUM		360	1000	50	200	UG/L
5/1/2012	1147	SELENIUM	<	0	50	5	50	UG/L
5/1/2012	70300	TOTAL DISSOLVED SOLIDS		110	1000	0	500	MG/L
5/1/2012	71814	LANGELIER INDEX AT SOURCE TEMP.	-	0.6	0	0	0	
5/1/2012	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
5/1/2012	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
5/1/2012	71900	MERCURY	<	0	2	1	2	UG/L
5/1/2012	82079	TURBIDITY, LABORATORY		3.7	5	0.1	5	NTU
5/1/2012	A-029	NITRATE + NITRITE (AS N)	<	0	10	0.4	5	mg/L
4/9/2012	95	SPECIFIC CONDUCTANCE		150	1600	0	900	US
4/9/2012	11501	RADIUM 228	<	0	0	1	0	
4/9/2012	11502	RADIUM 228 COUNTING ERROR		0.585	0	0	0	PCI/L
4/9/2012	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L

4/9/2012	A-031	PERCHLORATE	<	0	6	4	4	UG/L
4/9/2012	A-075	RADIUM 228 MDA95		0.203	1	0	0	PCI/L
2/27/2012	410	ALKALINITY (TOTAL) AS CACO3		57	0	0	0	MG/L
2/27/2012	680	TOTAL ORGANIC CARBON (TOC)		0.54	0	0.3	0	MG/L
1/9/2012	11501	RADIUM 228	<	0	0	1	0	
1/9/2012	11502	RADIUM 228 COUNTING ERROR		0.585	0	0	0	PCI/L
1/9/2012	A-075	RADIUM 228 MDA95		0.203	1	0	0	PCI/L
12/5/2011	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
11/8/2011	410	ALKALINITY (TOTAL) AS CACO3		74	0	0	0	MG/L
11/8/2011	680	TOTAL ORGANIC CARBON (TOC)		0.81	0	0.3	0	MG/L
10/6/2011	11501	RADIUM 228	<	0	0	1	0	
10/6/2011	11502	RADIUM 228 COUNTING ERROR		0.585	0	0	0	PCI/L
10/6/2011	A-075	RADIUM 228 MDA95		0.203	1	0	0	PCI/L
8/22/2011	410	ALKALINITY (TOTAL) AS CACO3		86	0	0	0	MG/L
8/22/2011	680	TOTAL ORGANIC CARBON (TOC)		0.49	0	0.3	0	MG/L
5/17/2011	410	ALKALINITY (TOTAL) AS CACO3		64	0	0	0	MG/L
5/17/2011	680	TOTAL ORGANIC CARBON (TOC)		0.67	0	0.3	0	MG/L
4/11/2011	95	SPECIFIC CONDUCTANCE		170	1600	0	900	US
4/11/2011	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
4/11/2011	A-031	PERCHLORATE	<	0	6	4	4	UG/L
2/10/2011	410	ALKALINITY (TOTAL) AS CACO3		64	0	0	0	MG/L
2/10/2011	680	TOTAL ORGANIC CARBON (TOC)		0.4	0	0.3	0	MG/L
11/2/2010	410	ALKALINITY (TOTAL) AS CACO3		64	0	0	0	MG/L
11/2/2010	680	TOTAL ORGANIC CARBON (TOC)		0.66	0	0.3	0	MG/L
8/10/2010	410	ALKALINITY (TOTAL) AS CACO3		76	0	0	0	MG/L
8/10/2010	680	TOTAL ORGANIC CARBON (TOC)		0.5	0	0.3	0	MG/L
5/25/2010	410	ALKALINITY (TOTAL) AS CACO3		54	0	0	0	MG/L
5/25/2010	680	TOTAL ORGANIC CARBON (TOC)		1.2	0	0.3	0	MG/L

4/6/2010	95	SPECIFIC CONDUCTANCE		160	1600	0	900	US
4/6/2010	1501	GROSS ALPHA	<	0	15	3	5	PCI/L
4/6/2010	1502	GROSS ALPHA COUNTING ERROR		0.16	0	0	0	PCI/L
4/6/2010	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
4/6/2010	A-031	PERCHLORATE	<	0	6	4	4	UG/L
2/22/2010	410	ALKALINITY (TOTAL) AS CACO3		59	0	0	0	MG/L
2/22/2010	680	TOTAL ORGANIC CARBON (TOC)		0.52	0	0.3	0	MG/L
11/3/2009	410	ALKALINITY (TOTAL) AS CACO3		77	0	0	0	MG/L
11/3/2009	680	TOTAL ORGANIC CARBON (TOC)		0.92	0	0.3	0	MG/L
8/18/2009	410	ALKALINITY (TOTAL) AS CACO3		76	0	0	0	MG/L
8/18/2009	680	TOTAL ORGANIC CARBON (TOC)		0.58	0	0.3	0	MG/L
8/11/2009	95	SPECIFIC CONDUCTANCE		220	1600	0	900	US
8/11/2009	A-031	PERCHLORATE	<	0	6	4	4	UG/L
5/12/2009	410	ALKALINITY (TOTAL) AS CACO3		58	0	0	0	MG/L
5/12/2009	680	TOTAL ORGANIC CARBON (TOC)		0.53	0	0.3	0	MG/L
4/7/2009	410	ALKALINITY (TOTAL) AS CACO3		58	0	0	0	MG/L
4/7/2009	680	TOTAL ORGANIC CARBON (TOC)		0.52	0	0.3	0	MG/L
3/24/2009	95	SPECIFIC CONDUCTANCE		170	1600	0	900	US
3/24/2009	A-031	PERCHLORATE	<	0	6	4	4	UG/L
3/10/2009	410	ALKALINITY (TOTAL) AS CACO3		52	0	0	0	MG/L
3/10/2009	680	TOTAL ORGANIC CARBON (TOC)		0.49	0	0.3	0	MG/L
2/3/2009	410	ALKALINITY (TOTAL) AS CACO3		62	0	0	0	MG/L
2/3/2009	680	TOTAL ORGANIC CARBON (TOC)		0.46	0	0.3	0	MG/L
1/20/2009	410	ALKALINITY (TOTAL) AS CACO3		60	0	0	0	MG/L
1/20/2009	680	TOTAL ORGANIC CARBON (TOC)		0.52	0	0.3	0	MG/L
12/16/2008	81	COLOR		12	15	0	15	UNITS

12/16/2008	86	ODOR THRESHOLD @ 60 C		1	3	1	3	TON
12/16/2008	95	SPECIFIC CONDUCTANCE		280	1600	0	900	US
12/16/2008	403	PH, LABORATORY		7.5	0	0	0	
12/16/2008	410	ALKALINITY (TOTAL) AS CACO3		66	0	0	0	MG/L
12/16/2008	440	BICARBONATE ALKALINITY		69	0	0	0	MG/L
12/16/2008	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
12/16/2008	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
12/16/2008	680	TOTAL ORGANIC CARBON (TOC)		1.4	0	0.3	0	MG/L
12/16/2008	900	HARDNESS (TOTAL) AS CACO3		110	0	0	0	MG/L
12/16/2008	916	CALCIUM		32	0	0	0	MG/L
12/16/2008	927	MAGNESIUM		6.2	0	0	0	MG/L
12/16/2008	929	SODIUM		11	0	0	0	MG/L
12/16/2008	937	POTASSIUM	<	2	0	0	0	MG/L
12/16/2008	940	CHLORIDE		10	500	0	250	MG/L
12/16/2008	945	SULFATE		43	500	0.5	250	MG/L
12/16/2008	951	FLUORIDE (F) (NATURAL- SOURCE)	<	0	2	0.1	2	MG/L
12/16/2008	1002	ARSENIC	<	0	10	2	5	UG/L
12/16/2008	1007	BARIUM	<	0	1000	100	1000	UG/L
12/16/2008	1012	BERYLLIUM	<	0	4	1	4	UG/L
12/16/2008	1027	CADMIUM	<	0	5	1	5	UG/L
12/16/2008	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
12/16/2008	1042	COPPER	<	0	1000	50	1000	UG/L
12/16/2008	1045	IRON	<	0	300	100	300	UG/L
12/16/2008	1051	LEAD MANGANESE	<	0	0	_	15	UG/L
12/16/2008 12/16/2008	1055 1059	THALLIUM	<	0	50	20	50	UG/L UG/L
12/16/2008	1039	NICKEL	<	0	100	10	100	UG/L
12/16/2008	1007	SILVER	<	0	100	10	100	UG/L
12/16/2008	1092	ZINC	<	0	5000	50	5000	UG/L
12/16/2008	1097	ANTIMONY	<	0	6	6	6	UG/L
12/16/2008	1105	ALUMINUM	<	0	1000	50	200	UG/L
12/16/2008	1147	SELENIUM	<	0	50	5	50	UG/L
12/16/2008	1291	CYANIDE	<	0	150	100	150	UG/L
12/16/2008	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L
12/16/2008	46491	METHYL-TERT-BUTYL- ETHER (MTBE)	<	0	13	3	3	UG/L
12/16/2008	70300	TOTAL DISSOLVED SOLIDS		180	1000	0	500	MG/L

12/16/2008	71814	LANGELIER INDEX AT SOURCE TEMP.	<	0	0	0	0	
12/16/2008	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
12/16/2008	71850	NITRATE (AS NO3)		3.01	45	2	23	MG/L
12/16/2008	71900	MERCURY	<	0	2	1	2	UG/L
12/16/2008	82079	TURBIDITY, LABORATORY		0.22	5	0.1	5	NTU
12/16/2008	A-029	NITRATE + NITRITE (AS N)		676	10	0.4	5	mg/L
11/18/2008	410	ALKALINITY (TOTAL) AS CACO3		82	0	0	0	MG/L
11/18/2008	680	TOTAL ORGANIC CARBON (TOC)		0.81	0	0.3	0	MG/L
10/7/2008	410	ALKALINITY (TOTAL) AS CACO3		78	0	0	0	MG/L
10/7/2008	680	TOTAL ORGANIC CARBON (TOC)		0.88	0	0.3	0	MG/L
9/9/2008	410	ALKALINITY (TOTAL) AS CACO3		80	0	0	0	MG/L
9/9/2008	680	TOTAL ORGANIC CARBON (TOC)		0.64	0	0.3	0	MG/L
8/19/2008	410	ALKALINITY (TOTAL) AS CACO3		78	0	0	0	MG/L
8/19/2008	680	TOTAL ORGANIC CARBON (TOC)		0.58	0	0.3	0	MG/L
7/7/2008	410	ALKALINITY (TOTAL) AS CACO3		78	0	0	0	MG/L
7/7/2008	680	TOTAL ORGANIC CARBON (TOC)		0.61	0	0.3	0	MG/L
7/7/2008	1045	IRON	<	0	300	100	300	UG/L
7/7/2008	1105	ALUMINUM	<	0	1000	50	200	UG/L
6/16/2008	951	FLUORIDE (F) (NATURAL- SOURCE)		0.14	2	0.1	2	MG/L
6/16/2008	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
5/20/2008	410	ALKALINITY (TOTAL) AS CACO3		70	0	0	0	MG/L
5/20/2008	680	TOTAL ORGANIC CARBON (TOC)		0.54	0	0.3	0	MG/L
4/15/2008	410	ALKALINITY (TOTAL) AS CACO3		65	0	0	0	MG/L
4/15/2008	680	TOTAL ORGANIC CARBON (TOC)		0.58	0	0.3	0	MG/L
4/14/2008	95	SPECIFIC CONDUCTANCE		190	1600	0	900	US
4/14/2008	A-031	PERCHLORATE	<	0	6	4	4	UG/L

2/26/2008	410	ALKALINITY (TOTAL) AS CACO3		54	0	0	0	MG/L
2/26/2008	680	TOTAL ORGANIC CARBON (TOC)		0.55	0	0.3	0	MG/L
12/26/2007	410	ALKALINITY (TOTAL) AS CACO3		54	0	0	0	MG/L
12/26/2007	680	TOTAL ORGANIC CARBON (TOC)		0.95	0	0.3	0	MG/L
12/20/2007	81	COLOR		7.5	15	0	15	UNITS
12/20/2007	86	ODOR THRESHOLD @ 60 C		4	3	1	3	TON
12/20/2007	95	SPECIFIC CONDUCTANCE		150	1600	0	900	US
12/20/2007	403	PH, LABORATORY		7.5	0	0	0	
12/20/2007	410	ALKALINITY (TOTAL) AS CACO3		43	0	0	0	MG/L
12/20/2007	440	BICARBONATE ALKALINITY		43	0	0	0	MG/L
12/20/2007	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
12/20/2007	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
12/20/2007	900	HARDNESS (TOTAL) AS CACO3		52	0	0	0	MG/L
12/20/2007	916	CALCIUM		15	0	0	0	MG/L
12/20/2007	927	MAGNESIUM		3.5	0	0	0	MG/L
12/20/2007	929	SODIUM		6.6	0	0	0	MG/L
12/20/2007	937	POTASSIUM	<	2	0	0	0	MG/L
12/20/2007	940	CHLORIDE		5.7	500	0	250	MG/L
12/20/2007	945	SULFATE		15	500	0.5	250	MG/L
12/20/2007	951	FLUORIDE (F) (NATURAL- SOURCE)	<	0	2	0.1	2	MG/L
12/20/2007	1002	ARSENIC	<	0	10	2	5	UG/L
12/20/2007	1007	BARIUM	<	0	1000	100	1000	UG/L
12/20/2007	1012	BERYLLIUM	<	0	4	1	4	UG/L
12/20/2007	1027	CADMIUM	<	0	5	1	5	UG/L
12/20/2007	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
12/20/2007	1042	COPPER	<	0	1000	50	1000	UG/L
12/20/2007	1045	IRON		1300	300	100	300	UG/L
12/20/2007	1051	LEAD	<	0	0	5	15	UG/L
12/20/2007	1055	MANGANESE		27	50	20	50	UG/L
12/20/2007	1059	THALLIUM	<	0	2	1	2	UG/L
12/20/2007	1067	NICKEL	<	0	100	10	100	UG/L
12/20/2007	1077	SILVER	<	0	100	10	100	UG/L
12/20/2007	1092	ZINC	<	0	5000	50	5000	UG/L
12/20/2007	1097	ANTIMONY	<	0	6	6	6	UG/L
12/20/2007	1105	ALUMINUM		1200	1000	50	200	UG/L
12/20/2007	1147	SELENIUM	<	0	50	5	50	UG/L

12/20/2007	1291	CYANIDE	<	100	150	100	150	UG/L
12/20/2007	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L
12/20/2007	46491	METHYL-TERT-BUTYL- ETHER (MTBE)	<	0	13	3	3	UG/L
12/20/2007	70300	TOTAL DISSOLVED SOLIDS		100	1000	0	500	MG/L
12/20/2007	71814	LANGELIER INDEX AT SOURCE TEMP.	<	0	0	0	0	
12/20/2007	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
12/20/2007	71850	NITRATE (AS NO3)		2.97	45	2	23	MG/L
12/20/2007	71900	MERCURY	<	0	2	1	2	UG/L
12/20/2007	82079	TURBIDITY, LABORATORY		22	5	0.1	5	NTU
12/20/2007	A-029	NITRATE + NITRITE (AS N)		665	10	0.4	5	mg/L
12/20/2006	81	COLOR		5	15	0	15	UNITS
12/20/2006	86	ODOR THRESHOLD @ 60 C		2	3	1	3	TON
12/20/2006	95	SPECIFIC CONDUCTANCE		160	1600	0	900	US
12/20/2006	403	PH, LABORATORY		7.5	0	0	0	
12/20/2006	410	ALKALINITY (TOTAL) AS CACO3		64	0	0	0	MG/L
12/20/2006	440	BICARBONATE ALKALINITY		64	0	0	0	MG/L
12/20/2006	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
12/20/2006	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
12/20/2006	900	HARDNESS (TOTAL) AS CACO3		60	0	0	0	MG/L
12/20/2006	916	CALCIUM		18	0	0	0	MG/L
12/20/2006	927	MAGNESIUM		3.6	0	0	0	MG/L
12/20/2006	929	SODIUM		7.1	0	0	0	MG/L
12/20/2006	940	CHLORIDE		6.5	500	0	250	MG/L
12/20/2006	945	SULFATE		15	500	0.5	250	MG/L
12/20/2006	1002	ARSENIC	<	0	10	2	5	UG/L
12/20/2006	1007	BARIUM	<	0	1000	100	1000	UG/L
12/20/2006	1012	BERYLLIUM	<	0	4	1	4	UG/L
12/20/2006	1027	CADMIUM	<	0	5	1	5	UG/L
12/20/2006	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
12/20/2006	1042	COPPER	<	0	1000	50	1000	UG/L
12/20/2006	1045	IRON		170	300	100	300	UG/L
12/20/2006	1055	MANGANESE	<	0	50	20	50	UG/L
12/20/2006	1059	THALLIUM	<	0	2	1	2	UG/L
12/20/2006	1067	NICKEL	<	0	100	10	100	UG/L

12/20/2006	1077	SILVER	<	0	100	10	100	UG/L
12/20/2006	1092	ZINC	<	0	5000	50	5000	UG/L
12/20/2006	1097	ANTIMONY	<	0	6	6	6	UG/L
12/20/2006	1105	ALUMINUM		160	1000	50	200	UG/L
12/20/2006	1147	SELENIUM	<	0	50	5	50	UG/L
12/20/2006	1501	GROSS ALPHA	<	0	15	3	5	PCI/L
12/20/2006	1502	GROSS ALPHA COUNTING ERROR		0.32	0	0	0	PCI/L
12/20/2006	28012	URANIUM (PCI/L)		2.81	20	1	20	PCI/L
12/20/2006	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L
12/20/2006	46491	METHYL-TERT-BUTYL- ETHER (MTBE)	<	0	13	3	3	UG/L
12/20/2006	70300	TOTAL DISSOLVED SOLIDS		96	1000	0	500	MG/L
12/20/2006	71830	HYDROXIDE ALKALINITY	\	1	0	0	0	MG/L
12/20/2006	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
12/20/2006	71900	MERCURY	<	0	2	1	2	UG/L
12/20/2006	79743	GLYPHOSATE	<	0	700	25	25	UG/L
12/20/2006	82079	TURBIDITY, LABORATORY		1.5	5	0.1	5	NTU
12/20/2006	82383	AGGRSSIVE INDEX (CORROSIVITY)	-	0.78	0	0	0	
12/20/2006	A-001	THIOBENCARB	<	0	70	1	0	
1/20/2005	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
12/27/2004	81	COLOR		40	15	0	15	UNITS
12/27/2004	86	ODOR THRESHOLD @ 60 C	<	0	3	1	3	TON
12/27/2004	95	SPECIFIC CONDUCTANCE		190	1600	0	900	US
12/27/2004	403	PH, LABORATORY		7.7	0	0	0	
12/27/2004	410	ALKALINITY (TOTAL) AS CACO3		50	0	0	0	MG/L
12/27/2004	440	BICARBONATE ALKALINITY		50	0	0	0	MG/L
12/27/2004	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
12/27/2004	900	HARDNESS (TOTAL) AS CACO3		78	0	0	0	MG/L
12/27/2004	916	CALCIUM		23	0	0	0	MG/L
12/27/2004	927	MAGNESIUM		5.1	0	0	0	MG/L
12/27/2004	929	SODIUM		7.8	0	0	0	MG/L
12/27/2004	937	POTASSIUM	<	0	0	0	0	MG/L
12/27/2004	940	CHLORIDE		6.2	500	0	250	MG/L
12/27/2004	945	SULFATE		26	500	0.5	250	MG/L
12/27/2004	1002	ARSENIC	<	0	10	2	5	UG/L

12/27/2004	1007	BARIUM	<	0	1000	100	1000	UG/L
12/27/2004	1012	BERYLLIUM	<	0	4	1	4	UG/L
12/27/2004	1027	CADMIUM	<	0	5	1	5	UG/L
12/27/2004	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
12/27/2004	1042	COPPER	<	0	1000	50	1000	UG/L
12/27/2004	1042	IRON	<	0	300	100	300	UG/L
12/27/2004	1043	LEAD		0	0	5	15	UG/L
		MANGANESE	<	49	50	20	50	
12/27/2004	1055						2	UG/L
12/27/2004	1059	THALLIUM	<	0	2	1		UG/L
12/27/2004	1067	NICKEL	<	20	100	10	100	UG/L
12/27/2004	1077	SILVER	<	0	100	10	100	UG/L
12/27/2004	1092	ZINC	<	0	5000	50	5000	UG/L
12/27/2004	1097	ANTIMONY	<	0	6	6	6	UG/L
12/27/2004	1105	ALUMINUM		2200	1000	50	200	UG/L
12/27/2004	1147	SELENIUM	<	0	50	5	50	UG/L
12/27/2004	38260	FOAMING AGENTS (MBAS)	<	0	0.5	0	0.5	MG/L
12/27/2004	70300	TOTAL DISSOLVED SOLIDS		110	1000	0	500	MG/L
12/27/2004	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
12/27/2004	71900	MERCURY	<	0	2	1	2	UG/L
12/27/2004	82079	TURBIDITY, LABORATORY		45	5	0.1	5	NTU
12/27/2004	82383	AGGRSSIVE INDEX (CORROSIVITY)	-	0.59	0	0	0	
12/21/2004	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
12/21/2004	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
3/4/2004	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
3/4/2004	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
1/31/2002	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
1/31/2002	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
1/31/2002	79743	GLYPHOSATE	<	0	700	25	25	UG/L
12/28/2001	1012	BERYLLIUM	<	0	4	1	4	UG/L
12/28/2001	1059	THALLIUM	<	0	2	1	2	UG/L
12/28/2001	1067	NICKEL	<	0	100	10	100	UG/L
12/28/2001	1007	ANTIMONY	<	0	6	6	6	UG/L
12/28/2001	1291	CYANIDE	<	0	150	100	150	UG/L
12/28/2001	1501	GROSS ALPHA	-	0.39	150	3	5	PCI/L
12/20/2001	1501	GROSS ALPHA COUNTING	_	0.39	13	3	3	I CI/L
12/28/2001	1502	ERROR		0.39	0	0	0	PCI/L
12/28/2001	32101	BROMODICHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
12/28/2001	32102	CARBON TETRACHLORIDE	<	0	0.5	0.5	0.5	UG/L
12/28/2001	32104	BROMOFORM (THM)	<	0	0	1	0	UG/L

		DIBROMOCHLOROMETHAN						
12/28/2001	32105	E (THM)	<	0	0	1	0	UG/L
12/28/2001	32106	CHLOROFORM (THM)	<	0	0	1	0	UG/L
12/28/2001	34010	TOLUENE	<	0	150	0.5	0.5	UG/L
12/28/2001	34030	BENZENE	<	0	1	0.5	0.5	UG/L
12/28/2001	34247	BENZO (A) PYRENE	<	0	0.2	0.1	0.1	UG/L
12/28/2001	34301	MONOCHLOROBENZENE	<	0	70	0.5	0.5	UG/L
12/28/2001	34311	CHLOROETHANE	<	0	0	0.5	0.5	UG/L
12/28/2001	34371	ETHYLBENZENE	<	0	300	0.5	0.5	UG/L
12/28/2001	34386	HEXACHLOROCYCLOPENT ADIENE	<	0	50	1	1	UG/L
12/28/2001	34391	HEXACHLOROBUTADIENE	<	0	0	0.5	0.5	UG/L
12/28/2001	34413	BROMOMETHANE	<	0	0	0.5	0.5	UG/L
12/28/2001	34418	CHLOROMETHANE	<	0	0	0.5	0.5	UG/L
12/28/2001	34423	DICHLOROMETHANE	<	0	5	0.5	0.5	UG/L
12/28/2001	34475	TETRACHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
12/28/2001	34488	TRICHLOROFLUOROMETH ANE	<	0	150	5	5	UG/L
12/28/2001	34496	1,1-DICHLOROETHANE	<	0	5	0.5	0.5	UG/L
12/28/2001	34501	1,1-DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
12/28/2001	34506	1,1,1-TRICHLOROETHANE	<	0	200	0.5	0.5	UG/L
12/28/2001	34511	1,1,2-TRICHLOROETHANE	<	0	5	0.5	0.5	UG/L
12/28/2001	34516	1,1,2,2- TETRACHLOROETHANE	<	0	1	0.5	0.5	UG/L
12/28/2001	34531	1,2-DICHLOROETHANE	<	0	0.5	0.5	0.5	UG/L
12/28/2001	34536	1,2-DICHLOROBENZENE	<	0	600	0.5	0.5	UG/L
12/28/2001	34541	1,2-DICHLOROPROPANE	<	0	5	0.5	0.5	UG/L
12/28/2001	34546	TRANS-1,2- DICHLOROETHYLENE	<	0	10	0.5	0.5	UG/L
12/28/2001	34551	1,2,4-TRICHLOROBENZENE	<	0	5	0.5	5	UG/L
12/28/2001	34561	1,3-DICHLOROPROPENE (TOTAL)	<	0	0.5	0.5	0.5	UG/L
12/28/2001	34566	1,3-DICHLOROBENZENE	<	0	0	0.5	600	UG/L
12/28/2001	34571	1,4-DICHLOROBENZENE	<	0	5	0.5	0.5	UG/L
12/28/2001	34668	DICHLORODIFLUOROMETH ANE (FREON 12)	<	0	1000	0.5	1000	UG/L
12/28/2001	34676	2,3,7,8-TCDD (DIOXIN)	<	0	30	5	30	PG/L
12/28/2001	34696	NAPHTHALENE	<	0	170	0.5	170	UG/L
12/28/2001	38432	DALAPON	<	0	200	10	10	UG/L
12/28/2001	38458	DIMETHOATE	<	0	0	0	0	UG/L

12/28/2001	38533	PROPACHLOR	<	0	0.5	0.5	0.5	UG/L
12/28/2001	38710	BENTAZON	<	0	18	2	2	UG/L
12/28/2001	30710	DIBROMOCHLOROPROPAN		0	10			UG/L
12/28/2001	38761	E (DBCP)	<	0	0.2	0.01	0.01	UG/L
12/28/2001	38865	OXAMYL	<	0	50	20	50	UG/L
12/28/2001	38926	ENDOTHALL	<	0	100	45	45	UG/L
12/28/2001	39032	PENTACHLOROPHENOL	<	0	1	0.2	0.2	UG/L
12/28/2001	39033	ATRAZINE	<	0	1	0.5	1	UG/L
12/28/2001	39045	2,4,5-TP (SILVEX)	<	0	50	1	1	UG/L
12/28/2001	39051	METHOMYL	<	0	0	2	2	UG/L
12/28/2001	39053	ALDICARB	<	0	0	3	7	UG/L
12/28/2001	39055	SIMAZINE	<	0	4	1	1	UG/L
12/28/2001	39057	PROMETRYN	<	0	0	2	2	UG/L
12/28/2001	39100	DI(2- ETHYLHEXYL)PHTHALATE	<	0	4	3	3	UG/L
12/28/2001	39175	VINYL CHLORIDE	<	0	0.5	0.5	0.5	UG/L
12/28/2001	39180	TRICHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
12/28/2001	39330	ALDRIN	<	0	0	0.075	0.002	UG/L
12/28/2001	39340	LINDANE	<	0	0.2	0.2	0.2	UG/L
12/28/2001	39350	CHLORDANE	<	0	0.1	0.1	0.1	UG/L
12/28/2001	39356	METOLACHLOR	<	0.5	0	0	0	UG/L
12/28/2001	39380	DIELDRIN	<	0	0	0.02	0.002	UG/L
12/28/2001	39390	ENDRIN	<	0	2	0.1	0.1	UG/L
12/28/2001	39400	TOXAPHENE	<	0	3	1	1	UG/L
12/28/2001	39410	HEPTACHLOR	<	0	0.01	0.01	0.01	UG/L
12/28/2001	39420	HEPTACHLOR EPOXIDE	<	0	0.01	0.01	0.01	UG/L
12/28/2001	39480	METHOXYCHLOR	<	0	30	10	30	UG/L
12/28/2001	39516	POLYCHLORINATED BIPHENYLS, TOTAL, AS DCB	<	0	0.5	0.5	0.5	UG/L
12/28/2001	39570	DIAZINON	<	0	1.2	0	0	UG/L
12/28/2001	39700	HEXACHLOROBENZENE	<	0	1	0.5	0.5	UG/L
12/28/2001	39720	PICLORAM	<	0	500	1	1	UG/L
12/28/2001	39730	2,4-D	<	0	70	10	10	UG/L
12/28/2001	46491	METHYL-TERT-BUTYL- ETHER (MTBE)	<	0	13	3	3	UG/L
12/28/2001	77093	CIS-1,2- DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
12/28/2001	77128	STYRENE	<	0	100	0.5	0.5	UG/L
12/28/2001	77135	O-XYLENE	<	0	0	0.5	0	UG/L
12/28/2001	77168	1,1-DICHLOROPROPENE	<	0	0	0.5	0.5	UG/L
12/28/2001	77170	2,2-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
12/28/2001	77173	1,3-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
12/28/2001	77222	1,2,4-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
12/28/2001	77223	ISOPROPYLBENZENE	<	0	770	0.5	770	UG/L

12/28/2001	77224	N-PROPYLBENZENE	<	0	260	0.5	260	UG/L
12/28/2001	77226	1,3,5-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
12/28/2001	77350	SEC-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
12/28/2001	77353	TERT-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
12/28/2001	77443	1,2,3-TRICHLOROPROPANE (1,2,3,-TCP)	<	0	0.005	0.005	0.005	UG/L
12/28/2001	77562	1,1,1,2- TETRACHLOROETHANE	<	0	0	0.5	0.5	UG/L
12/28/2001	77596	DIBROMOMETHANE	<	0	0	0.5	0.5	UG/L
12/28/2001	77613	1,2,3-TRICHLOROBENZENE	<	0	0	0.5	0.5	UG/L
12/28/2001	77651	ETHYLENE DIBROMIDE (EDB)	<	0	0.05	0.02	0.02	UG/L
12/28/2001	77700	CARBARYL	<	0	0	5	700	UG/L
12/28/2001	77825	ALACHLOR	<	0	2	1	1	UG/L
12/28/2001	77860	BUTACHLOR	<	0	0	0.38	0.38	UG/L
12/28/2001	78885	DIQUAT	<	0	20	4	4	UG/L
12/28/2001	79743	GLYPHOSATE	<	0	700	25	25	UG/L
12/28/2001	81287	DINOSEB	<	0	7	2	2	UG/L
12/28/2001	81405	CARBOFURAN	<	0	18	5	5	UG/L
12/28/2001	81408	METRIBUZIN	<	0.25	0	0	0	UG/L
12/28/2001	81551	XYLENES (TOTAL)	<	0	1750	0	1750	UG/L
12/28/2001	81555	BROMOBENZENE	<	0	0	0.5	0.5	UG/L
12/28/2001	81611	TRICHLOROTRIFLUOROET HANE (FREON 113)	<	0	1200	10	10	UG/L
12/28/2001	82052	DICAMBA	<	0	0	1.5	0	UG/L
12/28/2001	82080	TOTAL TRIHALOMETHANES	<	0	80	0	80	UG/L
12/28/2001	82198	BROMACIL	<	0	0	10	10	UG/L
12/28/2001	82199	MOLINATE	<	0	20	2	2	UG/L
12/28/2001	A-001	THIOBENCARB	<	0	70	1	0	
12/28/2001	A-008	2-CHLOROTOLUENE	<	0	140	0.5	0.5	UG/L
12/28/2001	A-009	4-CHLOROTOLUENE	<	0	140	0.5	140	UG/L
12/28/2001	A-010	N-BUTYLBENZENE	<	0	260	0.5	70	UG/L
12/28/2001	A-011	P-ISOPROPYLTOLUENE	<	0	0	0	0	UG/L
12/28/2001	A-012	BROMOCHLOROMETHANE	<	0	0	0.5	0.5	UG/L
12/28/2001	A-014	M,P-XYLENE	<	0	0	0.5	0	UG/L
12/28/2001	A-019	ALDICARB SULFOXIDE	<	0	0	3	3	UG/L
12/28/2001	A-020	ALDICARB SULFONE	<	0	0	4	4	UG/L
12/28/2001	A-021	3-HYDROXYCARBOFURAN	<	0	0	3	3	UG/L
12/28/2001	A-026	DI(2- ETHYLHEXYL)ADIPATE	<	0	400	5	5	UG/L

12/28/2001	A-033	ETHYL-TERT-BUTYL ETHER	<	0	0	3	0	UG/L
12/28/2001	A-034	TERT-AMYL-METHYL ETHER	<	0	0	3	0	UG/L
12/28/2001	A-036	DIISOPROPYL ETHER	<	0	0	3	0	UG/L
3/8/2001	46491	METHYL-TERT-BUTYL- ETHER (MTBE)	<	0	13	3	3	UG/L
3/8/2001	79743	GLYPHOSATE	<	0	700	25	25	UG/L
1/26/2000	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
1/26/2000	1012	BERYLLIUM	<	0	4	1	4	UG/L
1/26/2000	1059	THALLIUM	<	0	2	1	2	UG/L
1/26/2000	1067	NICKEL	<	0	100	10	100	UG/L
1/26/2000	1097	ANTIMONY	<	0	6	6	6	UG/L
1/26/2000	71850	NITRATE (AS NO3)		2	45	2	23	MG/L
5/13/1999	79743	GLYPHOSATE	<	0	700	25	25	UG/L
2/13/1997	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
2/13/1997	1012	BERYLLIUM	<	0	4	1	4	UG/L
2/13/1997	1059	THALLIUM	<	0	2	1	2	UG/L
2/13/1997	1067	NICKEL	<	0	100	10	100	UG/L
2/13/1997	1097	ANTIMONY	<	0	6	6	6	UG/L
2/13/1997	71850	NITRATE (AS NO3)		2.3	45	2	23	MG/L
12/29/1994	95	SPECIFIC CONDUCTANCE		180	1600	0	900	US
12/29/1994	403	PH, LABORATORY		7.8	0	0	0	
12/29/1994	410	ALKALINITY (TOTAL) AS CACO3		50	0	0	0	MG/L
12/29/1994	440	BICARBONATE ALKALINITY		50	0	0	0	MG/L
12/29/1994	445	CARBONATE ALKALINITY	<	0	0	0	0	MG/L
12/29/1994	900	HARDNESS (TOTAL) AS CACO3		75	0	0	0	MG/L
12/29/1994	916	CALCIUM		23	0	0	0	MG/L
12/29/1994	927	MAGNESIUM		4.3	0	0	0	MG/L
12/29/1994	929	SODIUM		7.7	0	0	0	MG/L
12/29/1994	940	CHLORIDE		8.2	500	0	250	MG/L
12/29/1994	945	SULFATE		26	500	0.5	250	MG/L
12/29/1994	951	FLUORIDE (F) (NATURAL- SOURCE)		0.1	2	0.1	2	MG/L
12/29/1994	1002	ARSENIC	<	0	10	2	5	UG/L
12/29/1994	1007	BARIUM	<	0	1000	100	1000	UG/L
12/29/1994	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
12/29/1994	1042	COPPER	<	0	1000	50	1000	UG/L
12/29/1994	1045	IRON		170	300	100	300	UG/L
12/29/1994	1051	LEAD	<	0	0	5	15	UG/L
12/29/1994	1055	MANGANESE	<	0	50	20	50	UG/L
12/29/1994	1077	SILVER	<	0	100	10	100	UG/L

12/29/1994	1092	ZINC	<	0	5000	50	5000	UG/L
12/29/1994	1105	ALUMINUM		130	1000	50	200	UG/L
12/29/1994	1147	SELENIUM	<	0	50	5	50	UG/L
12/29/1994	32101	BROMODICHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
12/29/1994	32102	CARBON TETRACHLORIDE	<	0	0.5	0.5	0.5	UG/L
12/29/1994	32104	BROMOFORM (THM)	<	0	0	1	0	UG/L
12/29/1994	32105	DIBROMOCHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
12/29/1994	32106	CHLOROFORM (THM)	<	0	0	1	0	UG/L
12/29/1994	34010	TOLUENE	<	0	150	0.5	0.5	UG/L
12/29/1994	34030	BENZENE	<	0	1	0.5	0.5	UG/L
12/29/1994	34301	MONOCHLOROBENZENE	<	0	70	0.5	0.5	UG/L
12/29/1994	34311	CHLOROETHANE	<	0	0	0.5	0.5	UG/L
12/29/1994	34371	ETHYLBENZENE	<	0	300	0.5	0.5	UG/L
12/29/1994	34386	HEXACHLOROCYCLOPENT ADIENE	<	0	50	1	1	UG/L
12/29/1994	34391	HEXACHLOROBUTADIENE	<	0	0	0.5	0.5	UG/L
12/29/1994	34413	BROMOMETHANE	<	0	0	0.5	0.5	UG/L
12/29/1994	34418	CHLOROMETHANE	<	0	0	0.5	0.5	UG/L
12/29/1994	34423	DICHLOROMETHANE	<	0	5	0.5	0.5	UG/L
12/29/1994	34475	TETRACHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
12/29/1994	34488	TRICHLOROFLUOROMETH ANE	<	0	150	5	5	UG/L
12/29/1994	34496	1,1-DICHLOROETHANE	<	0	5	0.5	0.5	UG/L
12/29/1994	34501	1,1-DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
12/29/1994	34506	1,1,1-TRICHLOROETHANE	<	0	200	0.5	0.5	UG/L
12/29/1994	34511	1,1,2-TRICHLOROETHANE	<	0	5	0.5	0.5	UG/L
12/29/1994	34516	1,1,2,2- TETRACHLOROETHANE	<	0	1	0.5	0.5	UG/L
12/29/1994	34531	1,2-DICHLOROETHANE	<	0	0.5	0.5	0.5	UG/L
12/29/1994	34536	1,2-DICHLOROBENZENE	<	0	600	0.5	0.5	UG/L
12/29/1994	34541	1,2-DICHLOROPROPANE	<	0	5	0.5	0.5	UG/L
12/29/1994	34546	TRANS-1,2- DICHLOROETHYLENE	<	0	10	0.5	0.5	UG/L
12/29/1994	34551	1,2,4-TRICHLOROBENZENE	<	0	5	0.5	5	UG/L
12/29/1994	34561	1,3-DICHLOROPROPENE (TOTAL)	<	0	0.5	0.5	0.5	UG/L
12/29/1994	34566	1,3-DICHLOROBENZENE	<	0	0	0.5	600	UG/L

12/29/1994	34571	1,4-DICHLOROBENZENE	<	0	5	0.5	0.5	UG/L
12/29/1994	34668	DICHLORODIFLUOROMETH ANE (FREON 12)	<	0	1000	0.5	1000	UG/L
12/29/1994	34696	NAPHTHALENE	<	0	170	0.5	170	UG/L
12/29/1994	38260	FOAMING AGENTS (MBAS)	<	0	0.5	0	0.5	MG/L
12/29/1994	38432	DALAPON	<	0	200	10	10	UG/L
12/29/1994	38458	DIMETHOATE	<	0	0	0	0	UG/L
12/29/1994	38533	PROPACHLOR	<	0	0.5	0.5	0.5	UG/L
12/29/1994	38710	BENTAZON	<	0	18	2	2	UG/L
12/29/1994	38865	OXAMYL	<	0	50	20	50	UG/L
12/29/1994	39032	PENTACHLOROPHENOL	<	0	1	0.2	0.2	UG/L
12/29/1994	39033	ATRAZINE	<	0	1	0.5	1	UG/L
12/29/1994	39045	2,4,5-TP (SILVEX)	<	0	50	1	1	UG/L
12/29/1994	39051	METHOMYL	<	0	0	2	2	UG/L
12/29/1994	39053	ALDICARB	<	0	0	3	7	UG/L
12/29/1994	39055	SIMAZINE	<	0	4	1	1	UG/L
12/29/1994	39057	PROMETRYN	<	0	0	2	2	UG/L
12/29/1994	39100	DI(2- ETHYLHEXYL)PHTHALATE	<	0	4	3	3	UG/L
12/29/1994	39175	VINYL CHLORIDE	<	0	0.5	0.5	0.5	UG/L
12/29/1994	39180	TRICHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
12/29/1994	39330	ALDRIN	<	0	0	0.075	0.002	UG/L
12/29/1994	39340	LINDANE	<	0	0.2	0.2	0.2	UG/L
12/29/1994	39350	CHLORDANE	<	0	0.1	0.1	0.1	UG/L
12/29/1994	39356	METOLACHLOR	<	0	0	0	0	UG/L
12/29/1994	39380	DIELDRIN	<	0	0	0.02	0.002	UG/L
12/29/1994	39390	ENDRIN	<	0	2	0.1	0.1	UG/L
12/29/1994	39400	TOXAPHENE	<	0	3	1	1	UG/L
12/29/1994	39410	HEPTACHLOR	<	0	0.01	0.01	0.01	UG/L
12/29/1994	39420	HEPTACHLOR EPOXIDE	<	0	0.01	0.01	0.01	UG/L
12/29/1994	39480	METHOXYCHLOR	<	0	30	10	30	UG/L
12/29/1994	39570	DIAZINON	<	0	1.2	0	0	UG/L
12/29/1994	39650	DIURON	<	0	0	0	0	UG/L
12/29/1994	39700	HEXACHLOROBENZENE	<	0	1	0.5	0.5	UG/L
12/29/1994	39720	PICLORAM	<	0	500	1	1	UG/L
12/29/1994	39730	2,4-D	<	0	70	10	10	UG/L
12/29/1994	70300	TOTAL DISSOLVED SOLIDS	`	89	1000	0	500	MG/L
12/29/1994	71830	HYDROXIDE ALKALINITY	<	0	0	0	0	MG/L
12/29/1994	71850	NITRATE (AS NO3)		1.6	45	2	23	MG/L
12/29/1994	71900	MERCURY	<	0	2	1	2	UG/L
12/29/1994	77093	CIS-1,2- DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
12/29/1994	77128	STYRENE	<	0	100	0.5	0.5	UG/L

12/29/1994	77135	O-XYLENE	<	0	0	0.5	0	UG/L
12/29/1994	77168	1,1-DICHLOROPROPENE	<	0	0	0.5	0.5	UG/L
12/29/1994	77170	2,2-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
12/29/1994	77173	1,3-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
12/29/1994	//1/3	1,3-DICHLOROFROFANE	_	0	U	0.5	0.5	UG/L
12/29/1994	77222	1,2,4-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
12/29/1994	77223	ISOPROPYLBENZENE	<	0	770	0.5	770	UG/L
12/29/1994	77224	N-PROPYLBENZENE	<	0	260	0.5	260	UG/L
12/29/1994	77226	1,3,5-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
12/29/1994	77350	SEC-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
12/29/1994	77353	TERT-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
12/29/1994	77443	1,2,3-TRICHLOROPROPANE (1,2,3,-TCP)	<	0	0.005	0.005	0.005	UG/L
12/29/1994	77562	1,1,1,2- TETRACHLOROETHANE	<	0	0	0.5	0.5	UG/L
12/29/1994	77596	DIBROMOMETHANE	<	0	0	0.5	0.5	UG/L
12/29/1994	77613	1,2,3-TRICHLOROBENZENE	<	0	0	0.5	0.5	UG/L
12/29/1994	77700	CARBARYL	<	0	0	5	700	UG/L
12/29/1994	77825	ALACHLOR	<	0	2	1	1	UG/L
12/29/1994	77860	BUTACHLOR	<	0	0	0.38	0.38	UG/L
12/29/1994	81287	DINOSEB	<	0	7	2	2	UG/L
12/29/1994	81405	CARBOFURAN	<	0	18	5	5	UG/L
12/29/1994	81551	XYLENES (TOTAL)	<	0	1750	0	1750	UG/L
12/29/1994	81555	BROMOBENZENE	<	0	0	0.5	0.5	UG/L
12/29/1994	81611	TRICHLOROTRIFLUOROET HANE (FREON 113)	<	0	1200	10	10	UG/L
12/29/1994	82080	TOTAL TRIHALOMETHANES	<	0	80	0	80	UG/L
12/29/1994	82198	BROMACIL	<	0	0	10	10	UG/L
12/29/1994	82199	MOLINATE	<	0	20	2	2	UG/L
12/29/1994	A-001	THIOBENCARB	<	0	70	1	0	
12/29/1994	A-008	2-CHLOROTOLUENE	<	0	140	0.5	0.5	UG/L
12/29/1994	A-009	4-CHLOROTOLUENE	<	0	140	0.5	140	UG/L
12/29/1994	A-010	N-BUTYLBENZENE	<	0	260	0.5	70	UG/L
12/29/1994	A-011	P-ISOPROPYLTOLUENE	<	0	0	0	0	UG/L
12/29/1994	A-012	BROMOCHLOROMETHANE	<	0	0	0.5	0.5	UG/L
12/29/1994	A-014	M,P-XYLENE	<	0	0	0.5	0	UG/L
12/29/1994	A-019	ALDICARB SULFOXIDE	<	0	0	3	3	UG/L
12/29/1994	A-020	ALDICARB SULFONE	<	0	0	4	4	UG/L
12/29/1994	A-021	3-HYDROXYCARBOFURAN	<	0	0	3	3	UG/L

12/14/1994	32101	BROMODICHLOROMETHAN E (THM)		6	0	1	0	UG/L
12/14/1994	32104	BROMOFORM (THM)	<	0	0	1	0	UG/L
12/14/1994	32105	DIBROMOCHLOROMETHAN E (THM)		0.75	0	1	0	UG/L
12/14/1994	32106	CHLOROFORM (THM)		29	0	1	0	UG/L
12/14/1994	82080	TOTAL TRIHALOMETHANES		36	80	0	80	UG/L
3/10/1993	81	COLOR		15	15	0	15	UNITS
3/10/1993	86	ODOR THRESHOLD @ 60 C	<	0	3	1	3	TON
3/10/1993	95	SPECIFIC CONDUCTANCE		170	1600	0	900	US
3/10/1993	403	PH, LABORATORY		7.6	0	0	0	
3/10/1993	410	ALKALINITY (TOTAL) AS CACO3		46	0	0	0	MG/L
3/10/1993	440	BICARBONATE ALKALINITY		46	0	0	0	MG/L
3/10/1993	445	CARBONATE ALKALINITY	<	0	0	0	0	MG/L
3/10/1993	900	HARDNESS (TOTAL) AS CACO3		67	0	0	0	MG/L
3/10/1993	916	CALCIUM		20	0	0	0	MG/L
3/10/1993	927	MAGNESIUM		4.2	0	0	0	MG/L
3/10/1993	929	SODIUM		7.8	0	0	0	MG/L
3/10/1993	940	CHLORIDE		5.4	500	0	250	MG/L
3/10/1993	945	SULFATE		16	500	0.5	250	MG/L
3/10/1993	951	FLUORIDE (F) (NATURAL- SOURCE)		0.12	2	0.1	2	MG/L
3/10/1993	1002	ARSENIC	<	0	10	2	5	UG/L
3/10/1993	1007	BARIUM	<	0	1000	100	1000	UG/L
3/10/1993	1027	CADMIUM	<	0	5	1	5	UG/L
3/10/1993	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
3/10/1993	1042	COPPER	<	0	1000	50	1000	UG/L
3/10/1993	1045	IRON		400	300	100	300	UG/L
3/10/1993	1051	LEAD	<	0	0	5	15	UG/L
3/10/1993	1055	MANGANESE	<	0	50	20	50	UG/L
3/10/1993	1077	SILVER	<	0	100	10	100	UG/L
3/10/1993	1092	ZINC		57	5000	50	5000	UG/L
3/10/1993	1105	ALUMINUM		480	1000	50	200	UG/L
3/10/1993	1147	SELENIUM	<	0	50	5	50	UG/L
3/10/1993	38260	FOAMING AGENTS (MBAS)	<	0	0.5	0	0.5	MG/L
3/10/1993	70300	TOTAL DISSOLVED SOLIDS		110	1000	0	500	MG/L
3/10/1993	71830	HYDROXIDE ALKALINITY	<	0	0	0	0	MG/L

3/10/1993	71850	NITRATE (AS NO3)		0.53	45	2	23	MG/L
3/10/1993	71900	MERCURY	<	0	2	1	2	UG/L
3/10/1993	82079	TURBIDITY, LABORATORY		2.6	5	0.1	5	NTU
3/4/1993	32101	BROMODICHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
3/4/1993	32102	CARBON TETRACHLORIDE	<	0	0.5	0.5	0.5	UG/L
3/4/1993	32104	BROMOFORM (THM)	<	0	0	1	0	UG/L
3/4/1993	32105	DIBROMOCHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
3/4/1993	32106	CHLOROFORM (THM)	<	0	0	1	0	UG/L
3/4/1993	34010	TOLUENE	<	0	150	0.5	0.5	UG/L
3/4/1993	34030	BENZENE	<	0	1	0.5	0.5	UG/L
3/4/1993	34301	MONOCHLOROBENZENE	<	0	70	0.5	0.5	UG/L
3/4/1993	34311	CHLOROETHANE	<	0	0	0.5	0.5	UG/L
3/4/1993	34371	ETHYLBENZENE	<	0	300	0.5	0.5	UG/L
3/4/1993	34391	HEXACHLOROBUTADIENE	<	0	0	0.5	0.5	UG/L
3/4/1993	34413	BROMOMETHANE	<	0	0	0.5	0.5	UG/L
3/4/1993	34418	CHLOROMETHANE	<	0	0	0.5	0.5	UG/L
3/4/1993	34423	DICHLOROMETHANE	<	0	5	0.5	0.5	UG/L
3/4/1993	34475	TETRACHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
3/4/1993	34488	TRICHLOROFLUOROMETH ANE	<	0	150	5	5	UG/L
3/4/1993	34496	1,1-DICHLOROETHANE	<	0	5	0.5	0.5	UG/L
3/4/1993	34501	1,1-DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
3/4/1993	34506	1,1,1-TRICHLOROETHANE	<	0	200	0.5	0.5	UG/L
3/4/1993	34511	1,1,2-TRICHLOROETHANE	<	0	5	0.5	0.5	UG/L
3/4/1993	34516	1,1,2,2- TETRACHLOROETHANE	<	0	1	0.5	0.5	UG/L
3/4/1993	34531	1,2-DICHLOROETHANE	<	0	0.5	0.5	0.5	UG/L
3/4/1993	34536	1,2-DICHLOROBENZENE	<	0	600	0.5	0.5	UG/L
3/4/1993	34541	1,2-DICHLOROPROPANE	<	0	5	0.5	0.5	UG/L
3/4/1993	34546	TRANS-1,2- DICHLOROETHYLENE	<	0	10	0.5	0.5	UG/L
3/4/1993	34551	1,2,4-TRICHLOROBENZENE	<	0	5	0.5	5	UG/L
3/4/1993	34561	1,3-DICHLOROPROPENE (TOTAL)	<	0	0.5	0.5	0.5	UG/L
3/4/1993	34566	1,3-DICHLOROBENZENE	<	0	0	0.5	600	UG/L
3/4/1993	34571	1,4-DICHLOROBENZENE	<	0	5	0.5	0.5	UG/L

3/4/1993	34668	DICHLORODIFLUOROMETH ANE (FREON 12)	<	0	1000	0.5	1000	UG/L
3/4/1993	34696	NAPHTHALENE	<	0	170	0.5	170	UG/L
3/4/1993	39045	2,4,5-TP (SILVEX)	<	1	50	1	1	UG/L
3/4/1993	39175	VINYL CHLORIDE	<	0	0.5	0.5	0.5	UG/L
3/4/1993	39180	TRICHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
3/4/1993	39340	LINDANE	<	0.01	0.2	0.2	0.2	UG/L
3/4/1993	39390	ENDRIN	<	0.01	2	0.1	0.1	UG/L
3/4/1993	39400	TOXAPHENE	<	0.5	3	1	1	UG/L
3/4/1993	39480	METHOXYCHLOR	<	0.1	30	10	30	UG/L
3/4/1993	39730	2,4-D	<	10	70	10	10	UG/L
3/4/1993	77093	CIS-1,2- DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
3/4/1993	77128	STYRENE	<	0	100	0.5	0.5	UG/L
3/4/1993	77135	O-XYLENE	<	0	0	0.5	0	UG/L
3/4/1993	77168	1,1-DICHLOROPROPENE	<	0	0	0.5	0.5	UG/L
3/4/1993	77170	2,2-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
3/4/1993	77173	1,3-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
3/4/1993	77222	1,2,4-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
3/4/1993	77223	ISOPROPYLBENZENE	<	0	770	0.5	770	UG/L
3/4/1993	77224	N-PROPYLBENZENE	<	0	260	0.5	260	UG/L
3/4/1993	77226	1,3,5-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
3/4/1993	77350	SEC-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
3/4/1993	77353	TERT-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
3/4/1993	77443	1,2,3-TRICHLOROPROPANE (1,2,3,-TCP)	<	0	0.005	0.005	0.005	UG/L
3/4/1993	77562	1,1,1,2- TETRACHLOROETHANE	<	0	0	0.5	0.5	UG/L
3/4/1993	77596	DIBROMOMETHANE	<	0	0	0.5	0.5	UG/L
3/4/1993	77613	1,2,3-TRICHLOROBENZENE	<	0	0	0.5	0.5	UG/L
3/4/1993	81551	XYLENES (TOTAL)	<	0	1750	0	1750	UG/L
3/4/1993	81555	BROMOBENZENE	<	0	0	0.5	0.5	UG/L
3/4/1993	81611	TRICHLOROTRIFLUOROET HANE (FREON 113)	<	0	1200	10	10	UG/L
3/4/1993	82080	TOTAL TRIHALOMETHANES	<	0	80	0	80	UG/L
3/4/1993	A-008	2-CHLOROTOLUENE	<	0	140	0.5	0.5	UG/L
3/4/1993	A-009	4-CHLOROTOLUENE	<	0	140	0.5	140	UG/L
3/4/1993	A-010	N-BUTYLBENZENE	<	0	260	0.5	70	UG/L
3/4/1993	A-011	P-ISOPROPYLTOLUENE	<	0	0	0	0	UG/L
3/4/1993	A-012	BROMOCHLOROMETHANE	<	0	0	0.5	0.5	UG/L
3/ 1/1773								

3/4/1992	95	SPECIFIC CONDUCTANCE		160	1600	0	900	US
3/4/1992	403	PH, LABORATORY		7.8	0	0	0	
3/4/1992	410	ALKALINITY (TOTAL) AS CACO3		55	0	0	0	MG/L
3/4/1992	440	BICARBONATE ALKALINITY		55	0	0	0	MG/L
3/4/1992	445	CARBONATE ALKALINITY	<	0	0	0	0	MG/L
3/4/1992	900	HARDNESS (TOTAL) AS CACO3		75	0	0	0	MG/L
3/4/1992	916	CALCIUM		23	0	0	0	MG/L
3/4/1992	927	MAGNESIUM		4.3	0	0	0	MG/L
3/4/1992	929	SODIUM		8.6	0	0	0	MG/L
3/4/1992	940	CHLORIDE		7.3	500	0	250	MG/L
3/4/1992	945	SULFATE		25	500	0.5	250	MG/L
3/4/1992	951	FLUORIDE (F) (NATURAL- SOURCE)		1.12	2	0.1	2	MG/L
3/4/1992	1002	ARSENIC	<	0	10	2	5	UG/L
3/4/1992	1007	BARIUM	<	0	1000	100	1000	UG/L
3/4/1992	1027	CADMIUM	<	0	5	1	5	UG/L
3/4/1992	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
3/4/1992	1042	COPPER	<	0	1000	50	1000	UG/L
3/4/1992	1045	IRON		110	300	100	300	UG/L
3/4/1992	1051	LEAD	<	0	0	5	15	UG/L
3/4/1992	1055	MANGANESE	<	0	50	20	50	UG/L
3/4/1992	1077	SILVER	<	0	100	10	100	UG/L
3/4/1992	1092	ZINC	<	0	5000	50	5000	UG/L
3/4/1992	1105	ALUMINUM	<	0	1000	50	200	UG/L
3/4/1992	1147	SELENIUM	<	0	50	5	50	UG/L
3/4/1992	38260	FOAMING AGENTS (MBAS)	<	0	0.5	0	0.5	MG/L
3/4/1992	39045	2,4,5-TP (SILVEX)	<	0	50	1	1	UG/L
3/4/1992	39340	LINDANE	<	0	0.2	0.2	0.2	UG/L
3/4/1992	39390	ENDRIN	<	0	2	0.1	0.1	UG/L
3/4/1992	39400	TOXAPHENE	<	0	3	1	1	UG/L
3/4/1992	39480	METHOXYCHLOR	<	0	30	10	30	UG/L
3/4/1992	39730	2,4-D	<	0	70	10	10	UG/L
3/4/1992	70300	TOTAL DISSOLVED SOLIDS	`	91	1000	0	500	MG/L
3/4/1992	71830	HYDROXIDE ALKALINITY	<	0	0	0	0	MG/L
3/4/1992	71850	NITRATE (AS NO3)		0.2	45	2	23	MG/L
3/4/1992	71900	MERCURY	<	0.2	2	1	2	UG/L
2/8/1991	95	SPECIFIC CONDUCTANCE		210	1600	0	900	US
2/8/1991	403	PH, LABORATORY		7.6	0	0	0	

2/8/1991	410	ALKALINITY (TOTAL) AS CACO3		59	0	0	0	MG/L
2/8/1991	440	BICARBONATE ALKALINITY		59	0	0	0	MG/L
2/8/1991	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
2/8/1991	900	HARDNESS (TOTAL) AS CACO3		110	0	0	0	MG/L
2/8/1991	916	CALCIUM		33	0	0	0	MG/L
2/8/1991	927	MAGNESIUM		5.7	0	0	0	MG/L
2/8/1991	929	SODIUM		8.9	0	0	0	MG/L
2/8/1991	940	CHLORIDE		6.6	500	0	250	MG/L
2/8/1991	945	SULFATE	<	31	500	0.5	250	MG/L
2/8/1991	951	FLUORIDE (F) (NATURAL- SOURCE)		0.11	2	0.1	2	MG/L
2/8/1991	1002	ARSENIC	<	5	10	2	5	UG/L
2/8/1991	1007	BARIUM		40	1000	100	1000	UG/L
2/8/1991	1027	CADMIUM	<	1	5	1	5	UG/L
2/8/1991	1034	CHROMIUM (TOTAL)	<	5	50	10	50	UG/L
2/8/1991	1042	COPPER	<	50	1000	50	1000	UG/L
2/8/1991	1045	IRON		500	300	100	300	UG/L
2/8/1991	1051	LEAD	<	5	0	5	15	UG/L
2/8/1991	1055	MANGANESE	<	30	50	20	50	UG/L
2/8/1991	1077	SILVER	<	2	100	10	100	UG/L
2/8/1991	1092	ZINC	<	50	5000	50	5000	UG/L
2/8/1991	1105	ALUMINUM		120	1000	50	200	UG/L
2/8/1991	1147	SELENIUM	<	5	50	5	50	UG/L
2/8/1991	1501	GROSS ALPHA	<	0	15	3	5	PCI/L
2/8/1991	1502	GROSS ALPHA COUNTING ERROR		1.9	0	0	0	PCI/L
2/8/1991	38260	FOAMING AGENTS (MBAS)	<	0.02	0.5	0	0.5	MG/L
2/8/1991	39045	2,4,5-TP (SILVEX)	<	1	50	1	1	UG/L
2/8/1991	39340	LINDANE	<	0.01	0.2	0.2	0.2	UG/L
2/8/1991	39390	ENDRIN	<	0.01	2	0.1	0.1	UG/L
2/8/1991	39400	TOXAPHENE	<	0.5	3	1	1	UG/L
2/8/1991	39480	METHOXYCHLOR	<	0.1	30	10	30	UG/L
2/8/1991	39730	2,4-D	<	10	70	10	10	UG/L
2/8/1991	70300	TOTAL DISSOLVED SOLIDS		82	1000	0	500	MG/L
2/8/1991	71814	LANGELIER INDEX AT SOURCE TEMP.	-	1.3	0	0	0	
2/8/1991	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
2/8/1991	71850	NITRATE (AS NO3)		0.3	45	2	23	MG/L
2/8/1991	71900	MERCURY	<	1	2	1	2	UG/L

9/18/1990	32101	BROMODICHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
9/18/1990	32102	CARBON TETRACHLORIDE	<	0	0.5	0.5	0.5	UG/L
9/18/1990	32104	BROMOFORM (THM)	<	0	0	1	0	UG/L
9/18/1990	32105	DIBROMOCHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
9/18/1990	32106	CHLOROFORM (THM)	<	0	0	1	0	UG/L
9/18/1990	34010	TOLUENE	<	0	150	0.5	0.5	UG/L
9/18/1990	34030	BENZENE	<	0	1	0.5	0.5	UG/L
9/18/1990	34301	MONOCHLOROBENZENE	<	0	70	0.5	0.5	UG/L
9/18/1990	34311	CHLOROETHANE	<	0	0	0.5	0.5	UG/L
9/18/1990	34371	ETHYLBENZENE	<	0	300	0.5	0.5	UG/L
9/18/1990	34391	HEXACHLOROBUTADIENE	<	0	0	0.5	0.5	UG/L
9/18/1990	34413	BROMOMETHANE	<	0	0	0.5	0.5	UG/L
9/18/1990	34418	CHLOROMETHANE	<	0	0	0.5	0.5	UG/L
9/18/1990	34423	DICHLOROMETHANE	<	0	5	0.5	0.5	UG/L
9/18/1990	34475	TETRACHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
9/18/1990	34488	TRICHLOROFLUOROMETH ANE	<	0	150	5	5	UG/L
9/18/1990	34496	1,1-DICHLOROETHANE	<	0	5	0.5	0.5	UG/L
9/18/1990	34501	1,1-DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
9/18/1990	34506	1,1,1-TRICHLOROETHANE	<	0	200	0.5	0.5	UG/L
9/18/1990	34511	1,1,2-TRICHLOROETHANE	<	0	5	0.5	0.5	UG/L
9/18/1990	34516	1,1,2,2- TETRACHLOROETHANE	<	0	1	0.5	0.5	UG/L
9/18/1990	34531	1,2-DICHLOROETHANE	<	0	0.5	0.5	0.5	UG/L
9/18/1990	34536	1,2-DICHLOROBENZENE	<	0	600	0.5	0.5	UG/L
9/18/1990	34541	1,2-DICHLOROPROPANE	<	0	5	0.5	0.5	UG/L
9/18/1990	34546	TRANS-1,2- DICHLOROETHYLENE	<	0	10	0.5	0.5	UG/L
9/18/1990	34551	1,2,4-TRICHLOROBENZENE	<	0	5	0.5	5	UG/L
9/18/1990	34561	1,3-DICHLOROPROPENE (TOTAL)	<	0	0.5	0.5	0.5	UG/L
9/18/1990	34566	1,3-DICHLOROBENZENE	<	0	0	0.5	600	UG/L
9/18/1990	34571	1,4-DICHLOROBENZENE	<	0	5	0.5	0.5	UG/L
9/18/1990	34668	DICHLORODIFLUOROMETH ANE (FREON 12)	<	0	1000	0.5	1000	UG/L
9/18/1990	34696	NAPHTHALENE	<	0	170	0.5	170	UG/L
9/18/1990	39175	VINYL CHLORIDE	<	0	0.5	0.5	0.5	UG/L

9/18/1990	39180	TRICHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
9/18/1990	77093	CIS-1,2- DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
9/18/1990	77128	STYRENE	<	0	100	0.5	0.5	UG/L
9/18/1990	77135	O-XYLENE	<	0	0	0.5	0	UG/L
9/18/1990	77168	1,1-DICHLOROPROPENE	<	0	0	0.5	0.5	UG/L
9/18/1990	77170	2,2-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
9/18/1990	77173	1,3-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
9/18/1990	77222	1,2,4-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
9/18/1990	77223	ISOPROPYLBENZENE	<	0	770	0.5	770	UG/L
9/18/1990	77224	N-PROPYLBENZENE	<	0	260	0.5	260	UG/L
9/18/1990	77226	1,3,5-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
9/18/1990	77350	SEC-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
9/18/1990	77353	TERT-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
9/18/1990	77443	1,2,3-TRICHLOROPROPANE (1,2,3,-TCP)	<	0	0.005	0.005	0.005	UG/L
9/18/1990	77562	1,1,1,2- TETRACHLOROETHANE	<	0	0	0.5	0.5	UG/L
9/18/1990	77596	DIBROMOMETHANE	<	0	0	0.5	0.5	UG/L
9/18/1990	77613	1,2,3-TRICHLOROBENZENE	<	0	0	0.5	0.5	UG/L
9/18/1990	81551	XYLENES (TOTAL)	<	0	1750	0	1750	UG/L
9/18/1990	81555	BROMOBENZENE	<	0	0	0.5	0.5	UG/L
9/18/1990	81611	TRICHLOROTRIFLUOROET HANE (FREON 113)	<	0	1200	10	10	UG/L
9/18/1990	82080	TOTAL TRIHALOMETHANES	<	0	80	0	80	UG/L
9/18/1990	A-008	2-CHLOROTOLUENE	<	0	140	0.5	0.5	UG/L
9/18/1990	A-009	4-CHLOROTOLUENE	<	0	140	0.5	140	UG/L
9/18/1990	A-010	N-BUTYLBENZENE	<	0	260	0.5	70	UG/L
9/18/1990	A-011	P-ISOPROPYLTOLUENE	<	0	0	0	0	UG/L
9/18/1990	A-012	BROMOCHLOROMETHANE	<	0	0	0.5	0.5	UG/L
9/18/1990	A-014	M,P-XYLENE	<	0	0	0.5	0	UG/L
9/7/1990	1105	ALUMINUM	<	100	1000	50	200	UG/L
9/7/1990	39033	ATRAZINE	<	1	1	0.5	1	UG/L
9/7/1990	39045	2,4,5-TP (SILVEX)	<	1	50	1	1	UG/L
9/7/1990	39055	SIMAZINE	<	1	4	1	1	UG/L
9/7/1990	39057	PROMETRYN	<	0.06	0	2	2	UG/L
9/7/1990	39340	LINDANE	<	0.4	0.2	0.2	0.2	UG/L
9/7/1990	39390	ENDRIN	<	0.01	2	0.1	0.1	UG/L
9/7/1990	39400	TOXAPHENE	<	0.5	3	1	1	UG/L
9/7/1990	39480	METHOXYCHLOR	<	10	30	10	30	UG/L
9/7/1990	39570	DIAZINON	<	0.02	1.2	0	0	UG/L

9/7/1990	39730	2,4-D	<	10	70	10	10	UG/L
9/7/1990	82198	BROMACIL	<	10	0	10	10	UG/L
9/7/1990	82199	MOLINATE	<	2	20	2	2	UG/L
9/7/1990	A-001	THIOBENCARB	<	0.8	70	1	0	
1/3/1990	95	SPECIFIC CONDUCTANCE		260	1600	0	900	US
1/3/1990	403	PH, LABORATORY		7.8	0	0	0	
1/3/1990	410	ALKALINITY (TOTAL) AS CACO3		70	0	0	0	MG/L
1/3/1990	440	BICARBONATE ALKALINITY		70	0	0	0	MG/L
1/3/1990	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
1/3/1990	900	HARDNESS (TOTAL) AS CACO3		97	0	0	0	MG/L
1/3/1990	916	CALCIUM		29	0	0	0	MG/L
1/3/1990	927	MAGNESIUM		6	0	0	0	MG/L
1/3/1990	929	SODIUM		12	0	0	0	MG/L
1/3/1990	940	CHLORIDE		12	500	0	250	MG/L
1/3/1990	945	SULFATE		32	500	0.5	250	MG/L
1/3/1990	951	FLUORIDE (F) (NATURAL- SOURCE)		0.1	2	0.1	2	MG/L
1/3/1990	1002	ARSENIC	<	5	10	2	5	UG/L
1/3/1990	1007	BARIUM		30	1000	100	1000	UG/L
1/3/1990	1027	CADMIUM	<	1	5	1	5	UG/L
1/3/1990	1034	CHROMIUM (TOTAL)	<	5	50	10	50	UG/L
1/3/1990	1042	COPPER	<	50	1000	50	1000	UG/L
1/3/1990	1045	IRON	<	50	300	100	300	UG/L
1/3/1990	1051	LEAD	<	10	0	5	15	UG/L
1/3/1990	1055	MANGANESE	<	30	50	20	50	UG/L
1/3/1990	1077	SILVER	<	2	100	10	100	UG/L
1/3/1990	1092	ZINC		70	5000	50	5000	UG/L
1/3/1990	1105	ALUMINUM	<	100	1000	50	200	UG/L
1/3/1990	1147	SELENIUM	<	5	50	5	50	UG/L
1/3/1990	38260	FOAMING AGENTS (MBAS)	<	0.02	0.5	0	0.5	MG/L
1/3/1990	70300	TOTAL DISSOLVED SOLIDS		200	1000	0	500	MG/L
1/3/1990	71813	LANGELIER INDEX @ 60 C	-	0.7	0	0	0	
1/3/1990	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
1/3/1990	71850	NITRATE (AS NO3)	<	0.1	45	2	23	MG/L
1/3/1990	71900	MERCURY	<	1	2	1	2	UG/L
9/27/1989	32101	BROMODICHLOROMETHAN E (THM)	<	0	0	1	0	UG/L

9/27/1989	32102	CARBON TETRACHLORIDE	<	0	0.5	0.5	0.5	UG/L
9/27/1989	32104	BROMOFORM (THM)	<	0	0	1	0	UG/L
9/27/1989	32105	DIBROMOCHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
9/27/1989	32106	CHLOROFORM (THM)	<	0	0	1	0	UG/L
9/27/1989	34010	TOLUENE	<	0	150	0.5	0.5	UG/L
9/27/1989	34030	BENZENE	<	0	1	0.5	0.5	UG/L
9/27/1989	34301	MONOCHLOROBENZENE	<	0	70	0.5	0.5	UG/L
9/27/1989	34311	CHLOROETHANE	<	0	0	0.5	0.5	UG/L
9/27/1989	34371	ETHYLBENZENE	<	0	300	0.5	0.5	UG/L
9/27/1989	34391	HEXACHLOROBUTADIENE	<	0	0	0.5	0.5	UG/L
9/27/1989	34413	BROMOMETHANE	<	0	0	0.5	0.5	UG/L
9/27/1989	34418	CHLOROMETHANE	<	0	0	0.5	0.5	UG/L
9/27/1989	34423	DICHLOROMETHANE	<	0	5	0.5	0.5	UG/L
9/27/1989	34475	TETRACHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
9/27/1989	34488	TRICHLOROFLUOROMETH ANE	<	0	150	5	5	UG/L
9/27/1989	34496	1,1-DICHLOROETHANE	<	0	5	0.5	0.5	UG/L
9/27/1989	34501	1,1-DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
9/27/1989	34506	1,1,1-TRICHLOROETHANE	<	0	200	0.5	0.5	UG/L
9/27/1989	34511	1,1,2-TRICHLOROETHANE	<	0	5	0.5	0.5	UG/L
9/27/1989	34516	1,1,2,2- TETRACHLOROETHANE	<	0	1	0.5	0.5	UG/L
9/27/1989	34531	1,2-DICHLOROETHANE	<	0	0.5	0.5	0.5	UG/L
9/27/1989	34536	1,2-DICHLOROBENZENE	<	0	600	0.5	0.5	UG/L
9/27/1989	34541	1,2-DICHLOROPROPANE	<	0	5	0.5	0.5	UG/L
9/27/1989	34546	TRANS-1,2- DICHLOROETHYLENE	<	0	10	0.5	0.5	UG/L
9/27/1989	34551	1,2,4-TRICHLOROBENZENE	<	0	5	0.5	5	UG/L
9/27/1989	34561	1,3-DICHLOROPROPENE (TOTAL)	<	0	0.5	0.5	0.5	UG/L
9/27/1989	34566	1,3-DICHLOROBENZENE	<	0	0	0.5	600	UG/L
9/27/1989	34571	1,4-DICHLOROBENZENE	<	0	5	0.5	0.5	UG/L
9/27/1989	34668	DICHLORODIFLUOROMETH ANE (FREON 12)	<	0	1000	0.5	1000	UG/L
9/27/1989	34696	NAPHTHALENE	<	0	170	0.5	170	UG/L
9/27/1989	39033	ATRAZINE	<	1	1	0.5	1	UG/L
9/27/1989	39045	2,4,5-TP (SILVEX)	<	1	50	1	1	UG/L
9/27/1989	39055	SIMAZINE	<	1	4	1	1	UG/L

9/27/1989	39057	PROMETRYN	<	0.02	0	2	2	UG/L
9/27/1989	39175	VINYL CHLORIDE	<	0	0.5	0.5	0.5	UG/L
9/27/1989	39180	TRICHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
9/27/1989	39340	LINDANE	<	0.4	0.2	0.2	0.2	UG/L
9/27/1989	39390	ENDRIN	<	0.01	2	0.1	0.1	UG/L
9/27/1989	39400	TOXAPHENE	<	0.5	3	1	1	UG/L
9/27/1989	39480	METHOXYCHLOR	<	10	30	10	30	UG/L
9/27/1989	39570	DIAZINON	<	0.02	1.2	0	0	UG/L
9/27/1989	39730	2,4-D	<	10	70	10	10	UG/L
9/27/1989	77093	CIS-1,2- DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
9/27/1989	77128	STYRENE	<	0	100	0.5	0.5	UG/L
9/27/1989	77135	O-XYLENE	<	0	0	0.5	0	UG/L
9/27/1989	77168	1,1-DICHLOROPROPENE	<	0	0	0.5	0.5	UG/L
9/27/1989	77170	2,2-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
9/27/1989	77173	1,3-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
9/27/1989	77222	1,2,4-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
9/27/1989	77223	ISOPROPYLBENZENE	<	0	770	0.5	770	UG/L
9/27/1989	77224	N-PROPYLBENZENE	<	0	260	0.5	260	UG/L
9/27/1989	77226	1,3,5-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
9/27/1989	77350	SEC-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
9/27/1989	77353	TERT-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
9/27/1989	77443	1,2,3-TRICHLOROPROPANE (1,2,3,-TCP)	<	0	0.005	0.005	0.005	UG/L
9/27/1989	77562	1,1,1,2- TETRACHLOROETHANE	<	0	0	0.5	0.5	UG/L
9/27/1989	77596	DIBROMOMETHANE	<	0	0	0.5	0.5	UG/L
9/27/1989	77613	1,2,3-TRICHLOROBENZENE	<	0	0	0.5	0.5	UG/L
9/27/1989	81551	XYLENES (TOTAL)	<	0	1750	0	1750	UG/L
9/27/1989	81555	BROMOBENZENE	<	0	0	0.5	0.5	UG/L
9/27/1989	81611	TRICHLOROTRIFLUOROET HANE (FREON 113)	<	0	1200	10	10	UG/L
9/27/1989	82080	TOTAL TRIHALOMETHANES	<	0	80	0	80	UG/L
9/27/1989	82198	BROMACIL	<	0.02	0	10	10	UG/L
9/27/1989	82199	MOLINATE	<	2	20	2	2	UG/L
9/27/1989	A-001	THIOBENCARB	<	0.8	70	1	0	
9/27/1989	A-008	2-CHLOROTOLUENE	<	0	140	0.5	0.5	UG/L
9/27/1989	A-009	4-CHLOROTOLUENE	<	0	140	0.5	140	UG/L
9/27/1989	A-010	N-BUTYLBENZENE	<	0	260	0.5	70	UG/L
9/27/1989	A-011	P-ISOPROPYLTOLUENE	<	0	0	0.5	0	UG/L
9/27/1989	A-012	BROMOCHLOROMETHANE	<	0	0	0.5	0.5	UG/L

9/27/1989	A-014	M,P-XYLENE	<	0	0	0.5	0	UG/L
6/20/1989	1501	GROSS ALPHA	<	0	15	3	5	PCI/L
6/20/1989	1502	GROSS ALPHA COUNTING ERROR		1.23	0	0	0	PCI/L
6/20/1989	32101	BROMODICHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
6/20/1989	32102	CARBON TETRACHLORIDE	<	0	0.5	0.5	0.5	UG/L
6/20/1989	32104	BROMOFORM (THM)	<	0	0	1	0	UG/L
6/20/1989	32105	DIBROMOCHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
6/20/1989	32106	CHLOROFORM (THM)	<	0	0	1	0	UG/L
6/20/1989	34010	TOLUENE	<	0	150	0.5	0.5	UG/L
6/20/1989	34030	BENZENE	<	0	1	0.5	0.5	UG/L
6/20/1989	34301	MONOCHLOROBENZENE	<	0	70	0.5	0.5	UG/L
6/20/1989	34311	CHLOROETHANE	<	0	0	0.5	0.5	UG/L
6/20/1989	34371	ETHYLBENZENE	<	0	300	0.5	0.5	UG/L
6/20/1989	34391	HEXACHLOROBUTADIENE	<	0	0	0.5	0.5	UG/L
6/20/1989	34413	BROMOMETHANE	<	0	0	0.5	0.5	UG/L
6/20/1989	34418	CHLOROMETHANE	<	0	0	0.5	0.5	UG/L
6/20/1989	34423	DICHLOROMETHANE	<	0	5	0.5	0.5	UG/L
6/20/1989	34475	TETRACHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
6/20/1989	34488	TRICHLOROFLUOROMETH ANE	<	0	150	5	5	UG/L
6/20/1989	34496	1,1-DICHLOROETHANE	<	0	5	0.5	0.5	UG/L
6/20/1989	34501	1,1-DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
6/20/1989	34506	1,1,1-TRICHLOROETHANE	<	0	200	0.5	0.5	UG/L
6/20/1989	34511	1,1,2-TRICHLOROETHANE	<	0	5	0.5	0.5	UG/L
6/20/1989	34516	1,1,2,2- TETRACHLOROETHANE	<	0	1	0.5	0.5	UG/L
6/20/1989	34531	1,2-DICHLOROETHANE	<	0	0.5	0.5	0.5	UG/L
6/20/1989	34536	1,2-DICHLOROBENZENE	<	0	600	0.5	0.5	UG/L
6/20/1989	34541	1,2-DICHLOROPROPANE	<	0	5	0.5	0.5	UG/L
6/20/1989	34546	TRANS-1,2- DICHLOROETHYLENE	<	0	10	0.5	0.5	UG/L
6/20/1989	34551	1,2,4-TRICHLOROBENZENE	<	0	5	0.5	5	UG/L
6/20/1989	34561	1,3-DICHLOROPROPENE (TOTAL)	<	0	0.5	0.5	0.5	UG/L
6/20/1989	34566	1,3-DICHLOROBENZENE	<	0	0	0.5	600	UG/L
6/20/1989	34571	1,4-DICHLOROBENZENE	<	0	5	0.5	0.5	UG/L

6/20/1989	34668	DICHLORODIFLUOROMETH ANE (FREON 12)	<	0	1000	0.5	1000	UG/L
6/20/1989	34696	NAPHTHALENE	<	0	170	0.5	170	UG/L
6/20/1989	39033	ATRAZINE	<	1	1	0.5	1	UG/L
6/20/1989	39045	2,4,5-TP (SILVEX)	<	1	50	1	1	UG/L
6/20/1989	39055	SIMAZINE	<	1	4	1	1	UG/L
6/20/1989	39057	PROMETRYN	<	0.5	0	2	2	UG/L
6/20/1989	39175	VINYL CHLORIDE	<	0	0.5	0.5	0.5	UG/L
6/20/1989	39180	TRICHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
6/20/1989	39340	LINDANE	<	0.4	0.2	0.2	0.2	UG/L
6/20/1989	39390	ENDRIN	<	0.01	2	0.1	0.1	UG/L
6/20/1989	39400	TOXAPHENE	<	0.5	3	1	1	UG/L
6/20/1989	39480	METHOXYCHLOR	<	10	30	10	30	UG/L
6/20/1989	39570	DIAZINON	<	0.1	1.2	0	0	UG/L
6/20/1989	39730	2,4-D	<	10	70	10	10	UG/L
		CIS-1,2-						
6/20/1989	77093	DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
6/20/1989	77128	STYRENE	<	0	100	0.5	0.5	UG/L
6/20/1989	77135	O-XYLENE	<	0	0	0.5	0	UG/L
6/20/1989	77168	1,1-DICHLOROPROPENE	<	0	0	0.5	0.5	UG/L
6/20/1989	77170	2,2-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
6/20/1989	77173	1,3-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
6/20/1989	77222	1,2,4-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
6/20/1989	77223	ISOPROPYLBENZENE	<	0	770	0.5	770	UG/L
6/20/1989	77224	N-PROPYLBENZENE	<	0	260	0.5	260	UG/L
6/20/1989	77226	1,3,5-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
6/20/1989	77350	SEC-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
6/20/1989	77353	TERT-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
6/20/1989	77443	1,2,3-TRICHLOROPROPANE (1,2,3,-TCP)	<	0	0.005	0.005	0.005	UG/L
6/20/1989	77562	1,1,1,2- TETRACHLOROETHANE	<	0	0	0.5	0.5	UG/L
6/20/1989	77596	DIBROMOMETHANE	<	0	0	0.5	0.5	UG/L
6/20/1989	77613	1,2,3-TRICHLOROBENZENE	<	0	0	0.5	0.5	UG/L
6/20/1989	81551	XYLENES (TOTAL)	<	0	1750	0	1750	UG/L
6/20/1989	81555	BROMOBENZENE	<	0	0	0.5	0.5	UG/L
6/20/1989	81611	TRICHLOROTRIFLUOROET HANE (FREON 113)	<	0	1200	10	10	UG/L
6/20/1989	82080	TOTAL TRIHALOMETHANES	<	0	80	0	80	UG/L
6/20/1989	82198	BROMACIL	<	2	0	10	10	UG/L
6/20/1989	82199	MOLINATE	<	2	20	2	2	UG/L
6/20/1989	A-001	THIOBENCARB	<	0.8	70	1	0	

6/20/1989	A-008	2-CHLOROTOLUENE	<	0	140	0.5	0.5	UG/L
6/20/1989	A-009	4-CHLOROTOLUENE	<	0	140	0.5	140	UG/L
6/20/1989	A-010	N-BUTYLBENZENE	<	0	260	0.5	70	UG/L
6/20/1989	A-011	P-ISOPROPYLTOLUENE	<	0	0	0	0	UG/L
6/20/1989	A-012	BROMOCHLOROMETHANE	<	0	0	0.5	0.5	UG/L
6/20/1989	A-014	M,P-XYLENE	<	0	0	0.5	0	UG/L
1/7/1989	95	SPECIFIC CONDUCTANCE		190	1600	0	900	US
1/7/1989	403	PH, LABORATORY		7.9	0	0	0	
1/7/1989	410	ALKALINITY (TOTAL) AS CACO3		50	0	0	0	MG/L
1/7/1989	440	BICARBONATE ALKALINITY		50	0	0	0	MG/L
1/7/1989	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
1/7/1989	900	HARDNESS (TOTAL) AS CACO3		59	0	0	0	MG/L
1/7/1989	916	CALCIUM		17	0	0	0	MG/L
1/7/1989	927	MAGNESIUM		4	0	0	0	MG/L
1/7/1989	929	SODIUM		7.8	0	0	0	MG/L
1/7/1989	940	CHLORIDE		5.5	500	0	250	MG/L
1/7/1989	945	SULFATE		19	500	0.5	250	MG/L
1/7/1989	951	FLUORIDE (F) (NATURAL- SOURCE)		0.27	2	0.1	2	MG/L
1/7/1989	1002	ARSENIC	<	5	10	2	5	UG/L
1/7/1989	1007	BARIUM	<	30	1000	100	1000	UG/L
1/7/1989	1027	CADMIUM	<	1	5	1	5	UG/L
1/7/1989	1034	CHROMIUM (TOTAL)	<	5	50	10	50	UG/L
1/7/1989	1042	COPPER	<	50	1000	50	1000	UG/L
1/7/1989	1045	IRON		310	300	100	300	UG/L
1/7/1989	1051	LEAD	<	10	0	5	15	UG/L
1/7/1989	1055	MANGANESE	<	30	50	20	50	UG/L
1/7/1989	1077	SILVER	<	2	100	10	100	UG/L
1/7/1989	1092	ZINC		60	5000	50	5000	UG/L
1/7/1989	1147	SELENIUM	<	5	50	5	50	UG/L
1/7/1989	38260	FOAMING AGENTS (MBAS)	<	0.02	0.5	0	0.5	MG/L
1/7/1989	70300	TOTAL DISSOLVED SOLIDS		130	1000	0	500	MG/L
1/7/1989	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
1/7/1989	71850	NITRATE (AS NO3)		0.2	45	2	23	MG/L
1/7/1989	71900	MERCURY	<	1	2	1	2	UG/L
1/18/1988	81	COLOR		3	15	0	15	UNITS
1/18/1988	86	ODOR THRESHOLD @ 60 C	<	1	3	1	3	TON

1/18/1988	95	SPECIFIC CONDUCTANCE		110	1600	0	900	US
1/18/1988	403	PH, LABORATORY		7.2	0	0	0	
1/18/1988	410	ALKALINITY (TOTAL) AS CACO3		40	0	0	0	MG/L
1/18/1988	440	BICARBONATE ALKALINITY		40	0	0	0	MG/L
1/18/1988	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
1/18/1988	900	HARDNESS (TOTAL) AS CACO3		54	0	0	0	MG/L
1/18/1988	916	CALCIUM		15	0	0	0	MG/L
1/18/1988	927	MAGNESIUM		4	0	0	0	MG/L
1/18/1988	929	SODIUM		7.3	0	0	0	MG/L
1/18/1988	940	CHLORIDE		4.9	500	0	250	MG/L
1/18/1988	945	SULFATE		10	500	0.5	250	MG/L
1/18/1988	951	FLUORIDE (F) (NATURAL- SOURCE)		0.2	2	0.1	2	MG/L
1/18/1988	1002	ARSENIC	<	5	10	2	5	UG/L
1/18/1988	1007	BARIUM	<	20	1000	100	1000	UG/L
1/18/1988	1027	CADMIUM	<	1	5	1	5	UG/L
1/18/1988	1034	CHROMIUM (TOTAL)	<	5	50	10	50	UG/L
1/18/1988	1042	COPPER	<	50	1000	50	1000	UG/L
1/18/1988	1045	IRON		180	300	100	300	UG/L
1/18/1988	1051	LEAD	<	10	0	5	15	UG/L
1/18/1988	1055	MANGANESE	<	30	50	20	50	UG/L
1/18/1988	1077	SILVER	<	2	100	10	100	UG/L
1/18/1988	1092	ZINC	<	50	5000	50	5000	UG/L
1/18/1988	1147	SELENIUM	<	5	50	5	50	UG/L
1/18/1988	38260	FOAMING AGENTS (MBAS)	<	0.01	0.5	0	0.5	MG/L
1/18/1988	70300	TOTAL DISSOLVED SOLIDS		86	1000	0	500	MG/L
1/18/1988	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
1/18/1988	71850	NITRATE (AS NO3)	<	0.2	45	2	23	MG/L
1/18/1988	71900	MERCURY	<	1	2	1	2	UG/L
1/18/1988	82079	TURBIDITY, LABORATORY		12	5	0.1	5	NTU
12/18/1986	81	COLOR		10	15	0	15	UNITS
12/18/1986	86	ODOR THRESHOLD @ 60 C	<	1	3	1	3	TON
12/18/1986	95	SPECIFIC CONDUCTANCE		183	1600	0	900	US
12/18/1986	403	PH, LABORATORY		8.1	0	0	0	
12/18/1986	410	ALKALINITY (TOTAL) AS CACO3		61	0	0	0	MG/L

12/18/1986	440	BICARBONATE		60	0	0	0	MG/L
		ALKALINITY						
12/18/1986	445	CARBONATE ALKALINITY		1	0	0	0	MG/L
12/18/1986	900	HARDNESS (TOTAL) AS CACO3		84	0	0	0	MG/L
12/18/1986	916	CALCIUM		26	0	0	0	MG/L
12/18/1986	927	MAGNESIUM		4.7	0	0	0	MG/L
12/18/1986	929	SODIUM		8.7	0	0	0	MG/L
12/18/1986	940	CHLORIDE		8.1	500	0	250	MG/L
12/18/1986	945	SULFATE		30	500	0.5	250	MG/L
12/18/1986	951	FLUORIDE (F) (NATURAL- SOURCE)		0.28	2	0.1	2	MG/L
12/18/1986	1002	ARSENIC	<	5	10	2	5	UG/L
12/18/1986	1007	BARIUM	<	50	1000	100	1000	UG/L
12/18/1986	1027	CADMIUM	<	2	5	1	5	UG/L
12/18/1986	1034	CHROMIUM (TOTAL)	<	5	50	10	50	UG/L
12/18/1986	1042	COPPER	<	50	1000	50	1000	UG/L
12/18/1986	1045	IRON	<	90	300	100	300	UG/L
12/18/1986	1051	LEAD	<	10	0	5	15	UG/L
12/18/1986	1055	MANGANESE	<	50	50	20	50	UG/L
12/18/1986	1077	SILVER	<	2	100	10	100	UG/L
12/18/1986	1092	ZINC	<	50	5000	50	5000	UG/L
12/18/1986	1147	SELENIUM	<	5	50	5	50	UG/L
12/18/1986	38260	FOAMING AGENTS (MBAS)	<	0.01	0.5	0	0.5	MG/L
12/18/1986	70300	TOTAL DISSOLVED SOLIDS		114	1000	0	500	MG/L
12/18/1986	71830	HYDROXIDE ALKALINITY	<	0	0	0	0	MG/L
12/18/1986	71850	NITRATE (AS NO3)		0.1	45	2	23	MG/L
12/18/1986	71900	MERCURY	<	2	2	1	2	UG/L
12/18/1986	82079	TURBIDITY, LABORATORY		0.85	5	0.1	5	NTU
11/21/1985	81	COLOR	<	5	15	0	15	UNITS
11/21/1985	86	ODOR THRESHOLD @ 60 C	<	1	3	1	3	TON
11/21/1985	95	SPECIFIC CONDUCTANCE		247	1600	0	900	US
11/21/1985	403	PH, LABORATORY		8.2	0	0	0	
11/21/1985	410	ALKALINITY (TOTAL) AS CACO3		60	0	0	0	MG/L
11/21/1985	440	BICARBONATE ALKALINITY		59	0	0	0	MG/L
11/21/1985	445	CARBONATE ALKALINITY		1	0	0	0	MG/L

11/21/1985	900	HARDNESS (TOTAL) AS CACO3		247	0	0	0	MG/L
11/21/1985	916	CALCIUM		38	0	0	0	MG/L
11/21/1985	927	MAGNESIUM		37	0	0	0	MG/L
11/21/1985	929	SODIUM		12	0	0	0	MG/L
11/21/1985	940	CHLORIDE		11.1	500	0	250	MG/L
11/21/1985	945	SULFATE		30	500	0.5	250	MG/L
11/21/1985	951	FLUORIDE (F) (NATURAL- SOURCE)		0.25	2	0.1	2	MG/L
11/21/1985	1002	ARSENIC	<	5	10	2	5	UG/L
11/21/1985	1007	BARIUM	<	80	1000	100	1000	UG/L
11/21/1985	1027	CADMIUM	<	2	5	1	5	UG/L
11/21/1985	1034	CHROMIUM (TOTAL)	<	5	50	10	50	UG/L
11/21/1985	1042	COPPER	<	50	1000	50	1000	UG/L
11/21/1985	1045	IRON	<	50	300	100	300	UG/L
11/21/1985	1051	LEAD	<	10	0	5	15	UG/L
11/21/1985	1055	MANGANESE	<	50	50	20	50	UG/L
11/21/1985	1077	SILVER	<	2	100	10	100	UG/L
11/21/1985	1092	ZINC	<	50	5000	50	5000	UG/L
11/21/1985	1147	SELENIUM	<	5	50	5	50	UG/L
11/21/1985	38260	FOAMING AGENTS (MBAS)	<	0.01	0.5	0	0.5	MG/L
11/21/1985	71830	HYDROXIDE ALKALINITY	<	0	0	0	0	MG/L
11/21/1985	71850	NITRATE (AS NO3)	<	0.1	45	2	23	MG/L
11/21/1985	71900	MERCURY	<	2	2	1	2	UG/L
11/21/1985	82079	TURBIDITY, LABORATORY		0.1	5	0.1	5	NTU
4/18/1985	951	FLUORIDE (F) (NATURAL- SOURCE)		0.12	2	0.1	2	MG/L
10/3/1984	81	COLOR	<	5	15	0	15	UNITS
10/3/1984	86	ODOR THRESHOLD @ 60 C	<	0	3	1	3	TON
10/3/1984	95	SPECIFIC CONDUCTANCE		180	1600	0	900	US
10/3/1984	403	PH, LABORATORY		8.2	0	0	0	
10/3/1984	410	ALKALINITY (TOTAL) AS CACO3		81	0	0	0	MG/L
10/3/1984	900	HARDNESS (TOTAL) AS CACO3		93	0	0	0	MG/L
10/3/1984	916	CALCIUM		27	0	0	0	MG/L
10/3/1984	927	MAGNESIUM		5	0	0	0	MG/L
10/3/1984	929	SODIUM		11	0	0	0	MG/L
10/3/1984	940	CHLORIDE		9.1	500	0	250	MG/L
10/3/1984	945	SULFATE		25	500	0.5	250	MG/L
10/3/1984	951	FLUORIDE (F) (NATURAL- SOURCE)		3.6	2	0.1	2	MG/L

10/3/1984	1002	ARSENIC	<	2	10	2	5	UG/L
10/3/1984	1007	BARIUM	<	0.2	1000	100	1000	UG/L
10/3/1984	1027	CADMIUM	<	10	5	1	5	UG/L
10/3/1984	1034	CHROMIUM (TOTAL)	<	80	50	10	50	UG/L
10/3/1984	1042	COPPER	<	20	1000	50	1000	UG/L
10/3/1984	1045	IRON	<	30	300	100	300	UG/L
10/3/1984	1051	LEAD	<	50	0	5	15	UG/L
10/3/1984	1055	MANGANESE	<	20	50	20	50	UG/L
10/3/1984	1077	SILVER	<	20	100	10	100	UG/L
10/3/1984	1092	ZINC	<	5	5000	50	5000	UG/L
10/3/1984	1147	SELENIUM	<	1	50	5	50	UG/L
10/3/1984	38260	FOAMING AGENTS (MBAS)	<	0.025	0.5	0	0.5	MG/L
10/3/1984	71814	LANGELIER INDEX AT SOURCE TEMP.		0.03	0	0	0	
10/3/1984	71850	NITRATE (AS NO3)		0.4	45	2	23	MG/L
10/3/1984	71900	MERCURY	<	0.5	2	1	2	UG/L
10/3/1984	82079	TURBIDITY, LABORATORY		0.35	5	0.1	5	NTU

		Spring - Raw (1	210022	-003)				
Sampling Date	Storet Number	Group/Constituent Identification	XMOD	Result	MCL	DLR	Trigger	Unit
8/3/2015	95	SPECIFIC CONDUCTANCE		270	1600	0	900	US
8/3/2015	A-031	PERCHLORATE	<	0	6	4	4	UG/L
5/19/2015	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
4/6/2015	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
10/27/2014	1032	CHROMIUM, HEXAVALENT	<	0	10	1	10	UG/L
4/7/2014	32101	BROMODICHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
4/7/2014	32102	CARBON TETRACHLORIDE	<	0	0.5	0.5	0.5	UG/L
4/7/2014	32104	BROMOFORM (THM)	<	0	0	1	0	UG/L
4/7/2014	32105	DIBROMOCHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
4/7/2014	32106	CHLOROFORM (THM)	<	0	0	1	0	UG/L
4/7/2014	34010	TOLUENE	<	0	150	0.5	0.5	UG/L
4/7/2014	34030	BENZENE	<	0	1	0.5	0.5	UG/L
4/7/2014	34301	MONOCHLOROBENZENE	<	0	70	0.5	0.5	UG/L

A /E /C O 1 :	0.1011	CIT OF OFFICE AND						T
4/7/2014	34311	CHLOROETHANE	<	0	0	0.5	0.5	UG/L
4/7/2014	34371	ETHYLBENZENE	<	0	300	0.5	0.5	UG/L
4/7/2014	34391	HEXACHLOROBUTADIENE	<	0	0	0.5	0.5	UG/L
4/7/2014	34413	BROMOMETHANE	<	0	0	0.5	0.5	UG/L
4/7/2014	34418	CHLOROMETHANE	<	0	0	0.5	0.5	UG/L
4/7/2014	34423	DICHLOROMETHANE	<	0	5	0.5	0.5	UG/L
4/7/2014	34475	TETRACHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
4/7/2014	34488	TRICHLOROFLUOROMETH ANE	<	0	150	5	5	UG/L
4/7/2014	34496	1,1-DICHLOROETHANE	<	0	5	0.5	0.5	UG/L
4/7/2014	34501	1,1-DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
4/7/2014	34506	1,1,1-TRICHLOROETHANE	<	0	200	0.5	0.5	UG/L
4/7/2014	34511	1,1,2-TRICHLOROETHANE	<	0	5	0.5	0.5	UG/L
4/7/2014	34516	1,1,2,2- TETRACHLOROETHANE	<	0	1	0.5	0.5	UG/L
4/7/2014	34531	1,2-DICHLOROETHANE	<	0	0.5	0.5	0.5	UG/L
4/7/2014	34536	1,2-DICHLOROBENZENE	<	0	600	0.5	0.5	UG/L
4/7/2014	34541	1,2-DICHLOROPROPANE	<	0	5	0.5	0.5	UG/L
4/7/2014	34546	TRANS-1,2- DICHLOROETHYLENE	<	0	10	0.5	0.5	UG/L
4/7/2014	34551	1,2,4-TRICHLOROBENZENE	<	0	5	0.5	5	UG/L
4/7/2014	34561	1,3-DICHLOROPROPENE (TOTAL)	<	0	0.5	0.5	0.5	UG/L
4/7/2014	34566	1,3-DICHLOROBENZENE	<	0	0	0.5	600	UG/L
4/7/2014	34571	1,4-DICHLOROBENZENE	<	0	5	0.5	0.5	UG/L
4/7/2014	34668	DICHLORODIFLUOROMETH ANE (FREON 12)	<	0	1000	0.5	1000	UG/L
4/7/2014	34696	NAPHTHALENE	<	0	170	0.5	170	UG/L
4/7/2014	34699	TRANS-1,3- DICHLOROPROPENE	<	0.5	0.5	0.5	0	UG/L
4/7/2014	34704	CIS-1,3-DICHLOROPROPENE	<	0.5	0.5	0.5	0.5	UG/L
4/7/2014	39175	VINYL CHLORIDE	<	0	0.5	0.5	0.5	UG/L
4/7/2014	39180	TRICHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
4/7/2014	46491	METHYL-TERT-BUTYL- ETHER (MTBE)	<	0	13	3	3	UG/L
4/7/2014	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
4/7/2014	77035	TERT-BUTYL ALCOHOL (TBA)	<	15	12	2	12	UG/L
4/7/2014	77093	CIS-1,2- DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L

4/7/2014	77128	STYRENE	<	0	100	0.5	0.5	UG/L
4/7/2014	77135	O-XYLENE	<	0	0	0.5	0.3	UG/L
4/7/2014	77168	1,1-DICHLOROPROPENE	<	0	0	0.5	0.5	UG/L
4/7/2014	77170	2,2-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
4/7/2014	77173	1,3-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
4/7/2014	77222	1,2,4-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
4/7/2014	77223	ISOPROPYLBENZENE	<	0	770	0.5	770	UG/L
4/7/2014	77224	N-PROPYLBENZENE	<	0	260	0.5	260	UG/L
4/7/2014	77226	1,3,5-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
4/7/2014	77350	SEC-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
4/7/2014	77353	TERT-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
4/7/2014	77443	1,2,3-TRICHLOROPROPANE (1,2,3,-TCP)	<	0.5	0.005	0.005	0.005	UG/L
4/7/2014	77562	1,1,1,2- TETRACHLOROETHANE	<	0	0	0.5	0.5	UG/L
4/7/2014	77596	DIBROMOMETHANE	<	0	0	0.5	0.5	UG/L
4/7/2014	77613	1,2,3-TRICHLOROBENZENE	<	0	0	0.5	0.5	UG/L
4/7/2014	81551	XYLENES (TOTAL)	<	0	1750	0	1750	UG/L
4/7/2014	81555	BROMOBENZENE	<	0	0	0.5	0.5	UG/L
4/7/2014	81611	TRICHLOROTRIFLUOROET HANE (FREON 113)	<	0	1200	10	10	UG/L
4/7/2014	82080	TOTAL TRIHALOMETHANES	<	0	80	0	80	UG/L
4/7/2014	A-008	2-CHLOROTOLUENE	<	0	140	0.5	0.5	UG/L
4/7/2014	A-009	4-CHLOROTOLUENE	<	0	140	0.5	140	UG/L
4/7/2014	A-010	N-BUTYLBENZENE	<	0	260	0.5	70	UG/L
4/7/2014	A-011	P-ISOPROPYLTOLUENE	<	0.5	0	0	0	UG/L
4/7/2014	A-012	BROMOCHLOROMETHANE	<	0	0	0.5	0.5	UG/L
4/7/2014	A-014	M,P-XYLENE	<	0	0	0.5	0	UG/L
4/7/2014	A-033	ETHYL-TERT-BUTYL ETHER	<	0	0	3	0	UG/L
4/7/2014	A-034	TERT-AMYL-METHYL ETHER	<	0	0	3	0	UG/L
4/7/2014	A-036	DIISOPROPYL ETHER	<	0	0	3	0	UG/L
4/8/2013	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
8/6/2012	95	SPECIFIC CONDUCTANCE		260	1600	0	900	US
8/6/2012	A-031	PERCHLORATE	<	0	6	4	4	UG/L
7/5/2012	11501	RADIUM 228	<	0	0	1	0	
7/5/2012	11502	RADIUM 228 COUNTING ERROR		0.525	0	0	0	PCI/L
7/5/2012	A-075	RADIUM 228 MDA95		0.249	1	0	0	PCI/L

5/1/2012	81	COLOR	<	3	15	0	15	UNITS
5/1/2012	86	ODOR THRESHOLD @ 60 C	<	0	3	1	3	TON
5/1/2012	95	SPECIFIC CONDUCTANCE		260	1600	0	900	US
5/1/2012	403	PH, LABORATORY		7.6	0	0	0	
5/1/2012	410	ALKALINITY (TOTAL) AS CACO3		98	0	0	0	MG/L
5/1/2012	440	BICARBONATE ALKALINITY		98	0	0	0	MG/L
5/1/2012	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
5/1/2012	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
5/1/2012	900	HARDNESS (TOTAL) AS CACO3		96	0	0	0	MG/L
5/1/2012	916	CALCIUM		28	0	0	0	MG/L
5/1/2012	927	MAGNESIUM		6.5	0	0	0	MG/L
5/1/2012	929	SODIUM		9.2	0	0	0	MG/L
5/1/2012	937	POTASSIUM	<	2	0	0	0	MG/L
5/1/2012	940	CHLORIDE		6.1	500	0	250	MG/L
5/1/2012	945	SULFATE		20	500	0.5	250	MG/L
5/1/2012	951	FLUORIDE (F) (NATURAL- SOURCE)		0.11	2	0.1	2	MG/L
5/1/2012	1002	ARSENIC	<	0	10	2	5	UG/L
5/1/2012	1007	BARIUM	<	0	1000	100	1000	UG/L
5/1/2012	1012	BERYLLIUM	<	0	4	1	4	UG/L
5/1/2012	1027	CADMIUM	<	0	5	1	5	UG/L
5/1/2012	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
5/1/2012	1042	COPPER	<	0	1000	50	1000	UG/L
5/1/2012	1045	IRON	<	0	300	100	300	UG/L
5/1/2012 5/1/2012	1051	LEAD	<	0	50	5	15 50	UG/L
	1055	MANGANESE	<	0	50	20	2	UG/L
5/1/2012 5/1/2012	1059 1067	THALLIUM NICKEL	<	0	100	10	100	UG/L UG/L
5/1/2012	1007	SILVER	<	0	100	10	100	UG/L
5/1/2012	1077	ZINC	<	0	5000	50	5000	UG/L
5/1/2012	1097	ANTIMONY	<	0	6	6	6	UG/L
5/1/2012	1105	ALUMINUM	<	0	1000	50	200	UG/L
5/1/2012	1147	SELENIUM	<	0	50	5	50	UG/L
5/1/2012	70300	TOTAL DISSOLVED SOLIDS	`	160	1000	0	500	MG/L
5/1/2012	71814	LANGELIER INDEX AT SOURCE TEMP.	-	0.37	0	0	0	
5/1/2012	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
5/1/2012	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
5/1/2012	71900	MERCURY	<	0	2	1	2	UG/L

5/1/2012	82079	TURBIDITY, LABORATORY		0.15	5	0.1	5	NTU
5/1/2012	A-029	NITRATE + NITRITE (AS N)	<	0	10	0.4	5	mg/L
4/9/2012	11501	RADIUM 228	<	0	0	1	0	
4/9/2012	11502	RADIUM 228 COUNTING ERROR		0.525	0	0	0	PCI/L
4/9/2012	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
4/9/2012	A-075	RADIUM 228 MDA95		0.249	1	0	0	PCI/L
1/9/2012	11501	RADIUM 228	<	0	0	1	0	
1/9/2012	11502	RADIUM 228 COUNTING ERROR		0.525	0	0	0	PCI/L
1/9/2012	A-075	RADIUM 228 MDA95		0.249	1	0	0	PCI/L
12/5/2011	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
10/6/2011	11501	RADIUM 228	<	0	0	1	0	
10/6/2011	11502	RADIUM 228 COUNTING ERROR		0.525	0	0	0	PCI/L
10/6/2011	A-075	RADIUM 228 MDA95		0.249	1	0	0	PCI/L
8/9/2011	1045	IRON	<	0	300	100	300	UG/L
8/9/2011	1055	MANGANESE	<	0	50	20	50	UG/L
5/9/2011	1045	IRON	<	0	300	100	300	UG/L
5/9/2011	1055	MANGANESE	<	0	50	20	50	UG/L
4/11/2011	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
11/8/2010	1045	IRON	<	0	300	100	300	UG/L
11/8/2010	1055	MANGANESE	<	0	50	20	50	UG/L
9/13/2010	1045	IRON	<	0	300	100	300	UG/L
9/13/2010	1055	MANGANESE	<	0	50	20	50	UG/L
4/5/2010	1501	GROSS ALPHA	<	0	15	3	5	PCI/L
4/5/2010	1502	GROSS ALPHA COUNTING ERROR		0.16	0	0	0	PCI/L
4/5/2010	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
8/11/2009	95	SPECIFIC CONDUCTANCE		240	1600	0	900	US
8/11/2009	A-031	PERCHLORATE	<	0	6	4	4	UG/L
3/24/2009	95	SPECIFIC CONDUCTANCE		230	1600	0	900	US
3/24/2009	A-031	PERCHLORATE	<	0	6	4	4	UG/L
12/30/2008	81	COLOR		3	15	0	15	UNITS
12/30/2008	86	ODOR THRESHOLD @ 60 C	<	0	3	1	3	TON
12/30/2008	95	SPECIFIC CONDUCTANCE		270	1600	0	900	US
12/30/2008	403	PH, LABORATORY		7.6	0	0	0	
12/30/2008	410	ALKALINITY (TOTAL) AS CACO3		100	0	0	0	MG/L
12/30/2008	440	BICARBONATE ALKALINITY		100	0	0	0	MG/L

12/30/2008	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
12/30/2008	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
12/30/2008	900	HARDNESS (TOTAL) AS CACO3		110	0	0	0	MG/L
12/30/2008	916	CALCIUM		32	0	0	0	MG/L
12/30/2008	927	MAGNESIUM		7.3	0	0	0	MG/L
12/30/2008	929	SODIUM		10	0	0	0	MG/L
12/30/2008	937	POTASSIUM	<	2	0	0	0	MG/L
12/30/2008	940	CHLORIDE		6	500	0	250	MG/L
12/30/2008	945	SULFATE		26	500	0.5	250	MG/L
12/30/2008	951	FLUORIDE (F) (NATURAL- SOURCE)		0.11	2	0.1	2	MG/L
12/30/2008	1002	ARSENIC	<	0	10	2	5	UG/L
12/30/2008	1007	BARIUM	<	0	1000	100	1000	UG/L
12/30/2008	1012	BERYLLIUM	<	0	4	1	4	UG/L
12/30/2008	1027	CADMIUM	<	0	5	1	5	UG/L
12/30/2008	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
12/30/2008	1042	COPPER	<	0	1000	50	1000	UG/L
12/30/2008	1045	IRON	<	0	300	100	300	UG/L
12/30/2008	1051	LEAD	<	0	0	5	15	UG/L
12/30/2008	1055	MANGANESE	<	0	50	20	50	UG/L
12/30/2008	1059	THALLIUM	<	0	2	1	2	UG/L
12/30/2008	1067	NICKEL	<	0	100	10	100	UG/L
12/30/2008	1077	SILVER	<	0	100	10	100	UG/L
12/30/2008	1092	ZINC	<	0	5000	50	5000	UG/L
12/30/2008	1097	ANTIMONY	<	0	6	6	6	UG/L
12/30/2008	1105	ALUMINUM	<	0	1000	50	200	UG/L
12/30/2008	1147	SELENIUM	<	0	50	5	50	UG/L
12/30/2008	1291	CYANIDE	<	0	150	100	150	UG/L
12/30/2008	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L
12/30/2008	46491	METHYL-TERT-BUTYL- ETHER (MTBE)	<	0	13	3	3	UG/L
12/30/2008	70300	TOTAL DISSOLVED SOLIDS		160	1000	0	500	MG/L
12/30/2008	71814	LANGELIER INDEX AT SOURCE TEMP.	<	0	0	0	0	
12/30/2008	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
12/30/2008	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
12/30/2008	71900	MERCURY	<	0	2	1	2	UG/L
12/30/2008	82079	TURBIDITY, LABORATORY		0.22	5	0.1	5	NTU
12/30/2008	A-029	NITRATE + NITRITE (AS N)	<	0	10	0.4	5	mg/L
7/7/2008	1045	IRON	<	0	300	100	300	UG/L

6/16/2008	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
4/14/2008	95	SPECIFIC CONDUCTANCE		230	1600	0	900	US
4/14/2008	32101	BROMODICHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
4/14/2008	32102	CARBON TETRACHLORIDE	<	0	0.5	0.5	0.5	UG/L
4/14/2008	32104	BROMOFORM (THM)	<	0	0	1	0	UG/L
4/14/2008	32105	DIBROMOCHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
4/14/2008	32106	CHLOROFORM (THM)	<	0	0	1	0	UG/L
4/14/2008	34010	TOLUENE	<	0	150	0.5	0.5	UG/L
4/14/2008	34030	BENZENE	<	0	1	0.5	0.5	UG/L
4/14/2008	34301	MONOCHLOROBENZENE	<	0	70	0.5	0.5	UG/L
4/14/2008	34311	CHLOROETHANE	<	0	0	0.5	0.5	UG/L
4/14/2008	34371	ETHYLBENZENE	<	0	300	0.5	0.5	UG/L
4/14/2008	34391	HEXACHLOROBUTADIENE	<	0	0	0.5	0.5	UG/L
4/14/2008	34413	BROMOMETHANE	<	0	0	0.5	0.5	UG/L
4/14/2008	34418	CHLOROMETHANE	<	0	0	0.5	0.5	UG/L
4/14/2008	34423	DICHLOROMETHANE	<	0	5	0.5	0.5	UG/L
4/14/2008	34475	TETRACHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
4/14/2008	34488	TRICHLOROFLUOROMETH ANE	<	0	150	5	5	UG/L
4/14/2008	34496	1,1-DICHLOROETHANE	<	0	5	0.5	0.5	UG/L
4/14/2008	34501	1,1-DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
4/14/2008	34506	1,1,1-TRICHLOROETHANE	<	0	200	0.5	0.5	UG/L
4/14/2008	34511	1,1,2-TRICHLOROETHANE	<	0	5	0.5	0.5	UG/L
4/14/2008	34516	1,1,2,2- TETRACHLOROETHANE	<	0	1	0.5	0.5	UG/L
4/14/2008	34531	1,2-DICHLOROETHANE	<	0	0.5	0.5	0.5	UG/L
4/14/2008	34536	1,2-DICHLOROBENZENE	<	0	600	0.5	0.5	UG/L
4/14/2008	34541	1,2-DICHLOROPROPANE	<	0	5	0.5	0.5	UG/L
4/14/2008	34546	TRANS-1,2- DICHLOROETHYLENE	<	0	10	0.5	0.5	UG/L
4/14/2008	34551	1,2,4-TRICHLOROBENZENE	<	0	5	0.5	5	UG/L
4/14/2008	34561	1,3-DICHLOROPROPENE (TOTAL)	<	0	0.5	0.5	0.5	UG/L
4/14/2008	34566	1,3-DICHLOROBENZENE	<	0	0	0.5	600	UG/L
4/14/2008	34571	1,4-DICHLOROBENZENE	<	0	5	0.5	0.5	UG/L

4/14/2008	34668	DICHLORODIFLUOROMETH ANE (FREON 12)	<	0	1000	0.5	1000	UG/L
4/14/2008	34696	NAPHTHALENE	<	0	170	0.5	170	UG/L
4/14/2008	34699	TRANS-1,3- DICHLOROPROPENE	<	0.5	0.5	0.5	0	UG/L
4/14/2008	34704	CIS-1,3-DICHLOROPROPENE	<	0.5	0.5	0.5	0.5	UG/L
4/14/2008	38761	DIBROMOCHLOROPROPAN E (DBCP)	<	2	0.2	0.01	0.01	UG/L
4/14/2008	39175	VINYL CHLORIDE	<	0	0.5	0.5	0.5	UG/L
4/14/2008	39180	TRICHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
4/14/2008	46491	METHYL-TERT-BUTYL- ETHER (MTBE)	<	0	13	3	3	UG/L
4/14/2008	77035	TERT-BUTYL ALCOHOL (TBA)	<	15	12	2	12	UG/L
4/14/2008	77093	CIS-1,2- DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
4/14/2008	77128	STYRENE	<	0	100	0.5	0.5	UG/L
4/14/2008	77135	O-XYLENE	<	0	0	0.5	0	UG/L
4/14/2008	77168	1,1-DICHLOROPROPENE	<	0	0	0.5	0.5	UG/L
4/14/2008	77170	2,2-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
4/14/2008	77173	1,3-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
4/14/2008	77222	1,2,4-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
4/14/2008	77223	ISOPROPYLBENZENE	<	0	770	0.5	770	UG/L
4/14/2008	77224	N-PROPYLBENZENE	<	0	260	0.5	260	UG/L
4/14/2008	77226	1,3,5-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
4/14/2008	77350	SEC-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
4/14/2008	77353	TERT-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
4/14/2008	77443	1,2,3-TRICHLOROPROPANE (1,2,3,-TCP)	<	0.5	0.005	0.005	0.005	UG/L
4/14/2008	77562	1,1,1,2- TETRACHLOROETHANE	<	0	0	0.5	0.5	UG/L
4/14/2008	77596	DIBROMOMETHANE	<	0	0	0.5	0.5	UG/L
4/14/2008	77613	1,2,3-TRICHLOROBENZENE	<	0	0	0.5	0.5	UG/L
4/14/2008	77651	ETHYLENE DIBROMIDE (EDB)	<	0.5	0.05	0.02	0.02	UG/L
4/14/2008	81551	XYLENES (TOTAL)	<	0	1750	0	1750	UG/L
4/14/2008	81555	BROMOBENZENE	<	0	0	0.5	0.5	UG/L
4/14/2008	81611	TRICHLOROTRIFLUOROET HANE (FREON 113)	<	0	1200	10	10	UG/L
4/14/2008	82080	TOTAL TRIHALOMETHANES	<	0	80	0	80	UG/L
4/14/2008	A-008	2-CHLOROTOLUENE	<	0	140	0.5	0.5	UG/L

4/14/2008	A-009	4-CHLOROTOLUENE	<	0	140	0.5	140	UG/L
4/14/2008	A-010	N-BUTYLBENZENE	<	0	260	0.5	70	UG/L
4/14/2008	A-011	P-ISOPROPYLTOLUENE	<	0.5	0	0	0	UG/L
4/14/2008	A-012	BROMOCHLOROMETHANE	<	0	0	0.5	0.5	UG/L
4/14/2008	A-014	M,P-XYLENE	<	0	0	0.5	0	UG/L
4/14/2008	A-031	PERCHLORATE	<	0	6	4	4	UG/L
4/14/2008	A-033	ETHYL-TERT-BUTYL ETHER	<	0	0	3	0	UG/L
4/14/2008	A-034	TERT-AMYL-METHYL ETHER	<	0	0	3	0	UG/L
4/14/2008	A-036	DIISOPROPYL ETHER	<	0	0	3	0	UG/L
12/20/2007	81	COLOR		25	15	0	15	UNITS
12/20/2007	86	ODOR THRESHOLD @ 60 C		1	3	1	3	TON
12/20/2007	95	SPECIFIC CONDUCTANCE		230	1600	0	900	US
12/20/2007	403	PH, LABORATORY		7.4	0	0	0	
12/20/2007	410	ALKALINITY (TOTAL) AS CACO3		85	0	0	0	MG/L
12/20/2007	440	BICARBONATE ALKALINITY		85	0	0	0	MG/L
12/20/2007	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
12/20/2007	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
12/20/2007	900	HARDNESS (TOTAL) AS CACO3		87	0	0	0	MG/L
12/20/2007	916	CALCIUM		23	0	0	0	MG/L
12/20/2007	927	MAGNESIUM		6.9	0	0	0	MG/L
12/20/2007	929	SODIUM		9.2	0	0	0	MG/L
12/20/2007	937	POTASSIUM	<	2	0	0	0	MG/L
12/20/2007	940	CHLORIDE		7.3	500	0	250	MG/L
12/20/2007	945	SULFATE		17	500	0.5	250	MG/L
12/20/2007	951	FLUORIDE (F) (NATURAL- SOURCE)	<	0	2	0.1	2	MG/L
12/20/2007	1002	ARSENIC	<	0	10	2	5	UG/L
12/20/2007	1007	BARIUM	<	0	1000	100	1000	UG/L
12/20/2007	1012	BERYLLIUM	<	0	4	1	4	UG/L
12/20/2007	1027	CADMIUM	<	0	5	1	5	UG/L
12/20/2007	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
12/20/2007	1042	COPPER	<	0	1000	50	1000	UG/L
12/20/2007	1045	IRON		330	300	100	300	UG/L
12/20/2007	1051	LEAD	<	0	0	5	15	UG/L
12/20/2007	1055	MANGANESE	<	0	50	20	50	UG/L
12/20/2007	1059	THALLIUM	<	0	2	1	2	UG/L
12/20/2007	1067	NICKEL	<	0	100	10	100	UG/L
12/20/2007	1077	SILVER	<	0	100	10	100	UG/L

12/20/2007	1092	ZINC	<	0	5000	50	5000	UG/L
12/20/2007	1097	ANTIMONY	<	0	6	6	6	UG/L
12/20/2007	1105	ALUMINUM		390	1000	50	200	UG/L
12/20/2007	1147	SELENIUM	<	0	50	5	50	UG/L
12/20/2007	1291	CYANIDE	<	100	150	100	150	UG/L
12/20/2007	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L
12/20/2007	46491	METHYL-TERT-BUTYL- ETHER (MTBE)	<	0	13	3	3	UG/L
12/20/2007	70300	TOTAL DISSOLVED SOLIDS		140	1000	0	500	MG/L
12/20/2007	71814	LANGELIER INDEX AT SOURCE TEMP.	<	0	0	0	0	
12/20/2007	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
12/20/2007	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
12/20/2007	71900	MERCURY	<	0	2	1	2	UG/L
12/20/2007	82079	TURBIDITY, LABORATORY		5.8	5	0.1	5	NTU
12/20/2007	A-029	NITRATE + NITRITE (AS N)	<	0	10	0.4	5	mg/L
12/20/2006	81	COLOR	<	3	15	0	15	UNITS
12/20/2006	86	ODOR THRESHOLD @ 60 C	<	0	3	1	3	TON
12/20/2006	95	SPECIFIC CONDUCTANCE		180	1600	0	900	US
12/20/2006	403	PH, LABORATORY		7.2	0	0	0	
12/20/2006	410	ALKALINITY (TOTAL) AS CACO3		69	0	0	0	MG/L
12/20/2006	440	BICARBONATE ALKALINITY		69	0	0	0	MG/L
12/20/2006	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
12/20/2006	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
12/20/2006	900	HARDNESS (TOTAL) AS CACO3		73	0	0	0	MG/L
12/20/2006	916	CALCIUM		20	0	0	0	MG/L
12/20/2006	927	MAGNESIUM		5.4	0	0	0	MG/L
12/20/2006	929	SODIUM		8	0	0	0	MG/L
12/20/2006	940	CHLORIDE		5.9	500	0	250	MG/L
12/20/2006	945	SULFATE		12	500	0.5	250	MG/L
12/20/2006	951	FLUORIDE (F) (NATURAL- SOURCE)		0.11	2	0.1	2	MG/L
12/20/2006	1002	ARSENIC	<	0	10	2	5	UG/L
12/20/2006	1007	BARIUM	<	0	1000	100	1000	UG/L
12/20/2006	1012	BERYLLIUM	<	0	4	1	4	UG/L
12/20/2006	1027	CADMIUM	<	0	5	1	5	UG/L

12/20/2006	1034	CHROMIUM (TOTAL)	<	T 0	50	10	50	UG/L
12/20/2006	1034	COPPER	<	0	1000	50	1000	UG/L
12/20/2006	1042	IRON	<	0	300	100	300	UG/L
12/20/2006	1055	MANGANESE	<	0	50	20	50	UG/L
12/20/2006	1059	THALLIUM	<	0	2	1	2	UG/L
12/20/2006	1067	NICKEL	<	0	100	10	100	UG/L
12/20/2006	1077	SILVER	<	0	100	10	100	UG/L
12/20/2006	1092	ZINC	<	0	5000	50	5000	UG/L
12/20/2006	1097	ANTIMONY	<	0	6	6	6	UG/L
12/20/2006	1105	ALUMINUM	<	0	1000	50	200	UG/L
12/20/2006	1147	SELENIUM	<	0	50	5	50	UG/L
12/20/2006	1501	GROSS ALPHA		0.27	15	3	5	PCI/L
12/20/2006	1502	GROSS ALPHA COUNTING ERROR		0.62	0	0	0	PCI/L
12/20/2006	28012	URANIUM (PCI/L)	<	0	20	1	20	PCI/L
12/20/2006	38260	FOAMING AGENTS (MBAS)	<	0.05	0.5	0	0.5	MG/L
12/20/2006	46491	METHYL-TERT-BUTYL- ETHER (MTBE)	<	0	13	3	3	UG/L
12/20/2006	70300	TOTAL DISSOLVED SOLIDS		110	1000	0	500	MG/L
12/20/2006	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
12/20/2006	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
12/20/2006	71900	MERCURY	<	0	2	1	2	UG/L
12/20/2006	79743	GLYPHOSATE	<	0	700	25	25	UG/L
12/20/2006	82079	TURBIDITY, LABORATORY		0.07	5	0.1	5	NTU
12/20/2006	82383	AGGRSSIVE INDEX (CORROSIVITY)	-	1	0	0	0	
12/20/2006	A-001	THIOBENCARB	<	0	70	1	0	
4/19/2005	1501	GROSS ALPHA		0.22	15	3	5	PCI/L
4/19/2005	1502	GROSS ALPHA COUNTING ERROR		0.75	0	0	0	PCI/L
4/19/2005	77226	1,3,5-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
12/27/2004	81	COLOR	<	0	15	0	15	UNITS
12/27/2004	86	ODOR THRESHOLD @ 60 C	<	0	3	1	3	TON
12/27/2004	95	SPECIFIC CONDUCTANCE		230	1600	0	900	US
12/27/2004	403	PH, LABORATORY		7.5	0	0	0	
12/27/2004	410	ALKALINITY (TOTAL) AS CACO3		86	0	0	0	MG/L
12/27/2004	440	BICARBONATE ALKALINITY		86	0	0	0	MG/L

12/27/2004	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
12/27/2004	900	HARDNESS (TOTAL) AS CACO3		93	0	0	0	MG/L
12/27/2004	916	CALCIUM		26	0	0	0	MG/L
12/27/2004	927	MAGNESIUM		6.9	0	0	0	MG/L
12/27/2004	929	SODIUM		9	0	0	0	MG/L
12/27/2004	937	POTASSIUM	<	0	0	0	0	MG/L
12/27/2004	940	CHLORIDE		5.1	500	0	250	MG/L
12/27/2004	945	SULFATE		18	500	0.5	250	MG/L
12/27/2004	1002	ARSENIC	<	0	10	2	5	UG/L
12/27/2004	1007	BARIUM	<	0	1000	100	1000	UG/L
12/27/2004	1012	BERYLLIUM	<	0	4	1	4	UG/L
12/27/2004	1027	CADMIUM	<	0	5	1	5	UG/L
12/27/2004	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
12/27/2004	1042	COPPER	<	0	1000	50	1000	UG/L
12/27/2004	1045	IRON	<	0	300	100	300	UG/L
12/27/2004	1051	LEAD	<	0	0	5	15	UG/L
12/27/2004	1055	MANGANESE	<	0	50	20	50	UG/L
12/27/2004	1059	THALLIUM	<	0	2	1	2	UG/L
12/27/2004	1067	NICKEL	<	0	100	10	100	UG/L
12/27/2004	1077	SILVER	<	0	100	10	100	UG/L
12/27/2004	1092	ZINC	<	0	5000	50	5000	UG/L
12/27/2004	1097	ANTIMONY	<	0	6	6	6	UG/L
12/27/2004	1105	ALUMINUM	<	0	1000	50	200	UG/L
12/27/2004	1147	SELENIUM	<	0	50	5	50	UG/L
12/27/2004	38260	FOAMING AGENTS (MBAS)	<	0	0.5	0	0.5	MG/L
12/27/2004	70300	TOTAL DISSOLVED SOLIDS		120	1000	0	500	MG/L
12/27/2004	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
12/27/2004	71900	MERCURY	<	0	2	1	2	UG/L
12/27/2004	82079	TURBIDITY, LABORATORY	<	0	5	0.1	5	NTU
12/27/2004	82383	AGGRSSIVE INDEX (CORROSIVITY)	-	0.5	0	0	0	
12/21/2004	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
12/21/2004	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
3/4/2004	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
3/4/2004	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
1/31/2002	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
1/31/2002	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
1/31/2002	79743	GLYPHOSATE	<	0	700	25	25	UG/L
12/28/2001	1012	BERYLLIUM	<	0	4	1	4	UG/L
12/28/2001	1059	THALLIUM	<	0	2	1	2	UG/L
12/28/2001	1067	NICKEL	<	0	100	10	100	UG/L

12/28/2001	1097	ANTIMONY	<	0	6	6	6	UG/L
12/28/2001	1291	CYANIDE	<	0	150	100	150	UG/L
12/28/2001	1501	GROSS ALPHA	-	0.32	15	3	5	PCI/L
12/28/2001	1502	GROSS ALPHA COUNTING ERROR		0.88	0	0	0	PCI/L
12/28/2001	32101	BROMODICHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
12/28/2001	32102	CARBON TETRACHLORIDE	<	0	0.5	0.5	0.5	UG/L
12/28/2001	32104	BROMOFORM (THM)	<	0	0	1	0	UG/L
12/28/2001	32105	DIBROMOCHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
12/28/2001	32106	CHLOROFORM (THM)	<	0	0	1	0	UG/L
12/28/2001	34010	TOLUENE	<	0	150	0.5	0.5	UG/L
12/28/2001	34030	BENZENE	<	0	1	0.5	0.5	UG/L
12/28/2001	34247	BENZO (A) PYRENE	<	0	0.2	0.1	0.1	UG/L
12/28/2001	34301	MONOCHLOROBENZENE	<	0	70	0.5	0.5	UG/L
12/28/2001	34311	CHLOROETHANE	<	0	0	0.5	0.5	UG/L
12/28/2001	34371	ETHYLBENZENE	<	0	300	0.5	0.5	UG/L
12/28/2001	34386	HEXACHLOROCYCLOPENT ADIENE	<	0	50	1	1	UG/L
12/28/2001	34391	HEXACHLOROBUTADIENE	<	0	0	0.5	0.5	UG/L
12/28/2001	34413	BROMOMETHANE	<	0	0	0.5	0.5	UG/L
12/28/2001	34418	CHLOROMETHANE	<	0	0	0.5	0.5	UG/L
12/28/2001	34423	DICHLOROMETHANE	<	0	5	0.5	0.5	UG/L
12/28/2001	34475	TETRACHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
12/28/2001	34488	TRICHLOROFLUOROMETH ANE	<	0	150	5	5	UG/L
12/28/2001	34496	1,1-DICHLOROETHANE	<	0	5	0.5	0.5	UG/L
12/28/2001	34501	1,1-DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
12/28/2001	34506	1,1,1-TRICHLOROETHANE	<	0	200	0.5	0.5	UG/L
12/28/2001	34511	1,1,2-TRICHLOROETHANE	<	0	5	0.5	0.5	UG/L
12/28/2001	34516	1,1,2,2- TETRACHLOROETHANE	<	0	1	0.5	0.5	UG/L
12/28/2001	34531	1,2-DICHLOROETHANE	<	0	0.5	0.5	0.5	UG/L
12/28/2001	34536	1,2-DICHLOROBENZENE	<	0	600	0.5	0.5	UG/L
12/28/2001	34541	1,2-DICHLOROPROPANE	<	0	5	0.5	0.5	UG/L
12/28/2001	34546	TRANS-1,2- DICHLOROETHYLENE	<	0	10	0.5	0.5	UG/L
12/28/2001	34551	1,2,4-TRICHLOROBENZENE	<	0	5	0.5	5	UG/L

12/28/2001	34561	1,3-DICHLOROPROPENE	<	0	0.5	0.5	0.5	UG/L
		(TOTAL)						
12/28/2001	34566	1,3-DICHLOROBENZENE	<	0	0	0.5	600	UG/L
12/28/2001	34571	1,4-DICHLOROBENZENE	<	0	5	0.5	0.5	UG/L
12/28/2001	34668	DICHLORODIFLUOROMETH ANE (FREON 12)	<	0	1000	0.5	1000	UG/L
12/28/2001	34676	2,3,7,8-TCDD (DIOXIN)	<	0	30	5	30	PG/L
12/28/2001	34696	NAPHTHALENE	<	0	170	0.5	170	UG/L
12/28/2001	38432	DALAPON	<	0	200	10	10	UG/L
12/28/2001	38458	DIMETHOATE	<	0	0	0	0	UG/L
12/28/2001	38533	PROPACHLOR	<	0	0.5	0.5	0.5	UG/L
12/28/2001	38710	BENTAZON	<	0	18	2	2	UG/L
12/28/2001	38761	DIBROMOCHLOROPROPAN E (DBCP)	<	0	0.2	0.01	0.01	UG/L
12/28/2001	38865	OXAMYL	<	0	50	20	50	UG/L
12/28/2001	38926	ENDOTHALL	<	0	100	45	45	UG/L
12/28/2001	39032	PENTACHLOROPHENOL	<	0	1	0.2	0.2	UG/L
12/28/2001	39033	ATRAZINE	<	0	1	0.5	1	UG/L
12/28/2001	39045	2,4,5-TP (SILVEX)	<	0	50	1	1	UG/L
12/28/2001	39051	METHOMYL	<	0	0	2	2	UG/L
12/28/2001	39053	ALDICARB	<	0	0	3	7	UG/L
12/28/2001	39055	SIMAZINE	<	0	4	1	1	UG/L
12/28/2001	39057	PROMETRYN	<	0	0	2	2	UG/L
12/28/2001	39100	DI(2- ETHYLHEXYL)PHTHALATE	<	0	4	3	3	UG/L
12/28/2001	39175	VINYL CHLORIDE	<	0	0.5	0.5	0.5	UG/L
12/28/2001	39180	TRICHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
12/28/2001	39330	ALDRIN	<	0	0	0.075	0.002	UG/L
12/28/2001	39340	LINDANE	<	0	0.2	0.2	0.2	UG/L
12/28/2001	39350	CHLORDANE	<	0	0.1	0.1	0.1	UG/L
12/28/2001	39356	METOLACHLOR	<	0	0	0	0	UG/L
12/28/2001	39380	DIELDRIN	<	0	0	0.02	0.002	UG/L
12/28/2001	39390	ENDRIN	<	0	2	0.1	0.1	UG/L
12/28/2001	39400	TOXAPHENE	<	0	3	1	1	UG/L
12/28/2001	39410	HEPTACHLOR	<	0	0.01	0.01	0.01	UG/L
12/28/2001	39420	HEPTACHLOR EPOXIDE	<	0	0.01	0.01	0.01	UG/L
12/28/2001	39480	METHOXYCHLOR	<	0	30	10	30	UG/L
12/28/2001	39516	POLYCHLORINATED BIPHENYLS, TOTAL, AS DCB	<	0	0.5	0.5	0.5	UG/L
12/28/2001	39570	DIAZINON	<	0	1.2	0	0	UG/L
12/28/2001	39700	HEXACHLOROBENZENE	<	0	1	0.5	0.5	UG/L
12/28/2001	39720	PICLORAM	<	0	500	1	1	UG/L
12/28/2001	39730	2,4-D	<	0	70	10	10	UG/L
12/28/2001	46491	METHYL-TERT-BUTYL- ETHER (MTBE)	<	0	13	3	3	UG/L

12/20/2001	77025	TERT-BUTYL ALCOHOL			10	2	10	II.C./I
12/28/2001	77035	(TBA)	<	0	12	2	12	UG/L
12/28/2001	77093	CIS-1,2- DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
12/28/2001	77128	STYRENE	<	0	100	0.5	0.5	UG/L
12/28/2001	77135	O-XYLENE	<	0	0	0.5	0	UG/L
12/28/2001	77168	1,1-DICHLOROPROPENE	<	0	0	0.5	0.5	UG/L
12/28/2001	77170	2,2-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
12/28/2001	77173	1,3-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
12/28/2001	77222	1,2,4-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
12/28/2001	77223	ISOPROPYLBENZENE	<	0	770	0.5	770	UG/L
12/28/2001	77224	N-PROPYLBENZENE	<	0	260	0.5	260	UG/L
12/28/2001	77226	1,3,5-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
12/28/2001	77350	SEC-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
12/28/2001	77353	TERT-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
12/28/2001	77443	1,2,3-TRICHLOROPROPANE (1,2,3,-TCP)	<	0	0.005	0.005	0.005	UG/L
12/28/2001	77562	1,1,1,2- TETRACHLOROETHANE	<	0	0	0.5	0.5	UG/L
12/28/2001	77596	DIBROMOMETHANE	<	0	0	0.5	0.5	UG/L
12/28/2001	77613	1,2,3-TRICHLOROBENZENE	<	0	0	0.5	0.5	UG/L
12/28/2001	77651	ETHYLENE DIBROMIDE (EDB)	<	0	0.05	0.02	0.02	UG/L
12/28/2001	77700	CARBARYL	<	0	0	5	700	UG/L
12/28/2001	77825	ALACHLOR	<	0	2	1	1	UG/L
12/28/2001	77860	BUTACHLOR	<	0	0	0.38	0.38	UG/L
12/28/2001	78132	P-XYLENE	<	0	0	0.5	0	UG/L
12/28/2001	78885	DIQUAT	<	0	20	4	4	UG/L
12/28/2001	79743	GLYPHOSATE	<	0	700	25	25	UG/L
12/28/2001	81287	DINOSEB	<	0	7	2	2	UG/L
12/28/2001	81405	CARBOFURAN	<	0	18	5	5	UG/L
12/28/2001	81408	METRIBUZIN	<	0	0	0	0	UG/L
12/28/2001	81551	XYLENES (TOTAL)	<	0	1750	0	1750	UG/L
12/28/2001	81555	BROMOBENZENE	<	0	0	0.5	0.5	UG/L
12/28/2001	81611	TRICHLOROTRIFLUOROET HANE (FREON 113)	<	0	1200	10	10	UG/L
12/28/2001	81710	M-XYLENE	<	0	0	0.5	0	UG/L
12/28/2001	82052	DICAMBA	<	0	0	1.5	0	UG/L
12/28/2001	82080	TOTAL TRIHALOMETHANES	<	0	80	0	80	UG/L
12/28/2001	82198	BROMACIL	<	0	0	10	10	UG/L
12/28/2001	82199	MOLINATE	<	0	20	2	2	UG/L
12/28/2001	A-001	THIOBENCARB	<	0	70	1	0	

12/29/2001	I 4 000	2 CHI ODOTOLUENE			T 140	0.5	0.5	LIC/I
12/28/2001	A-008	2-CHLOROTOLUENE	<	0	140	0.5	0.5	UG/L
12/28/2001	A-009	4-CHLOROTOLUENE	<	0	140	0.5	140	UG/L
12/28/2001	A-010	N-BUTYLBENZENE	<	0	260	0.5	70	UG/L
12/28/2001	A-011	P-ISOPROPYLTOLUENE	<	0	0	0	0	UG/L
12/28/2001	A-012	BROMOCHLOROMETHANE	<	0	0	0.5	0.5	UG/L
12/28/2001	A-014	M,P-XYLENE	<	0	0	0.5	0	UG/L
12/28/2001	A-019	ALDICARB SULFOXIDE	<	0	0	3	3	UG/L
12/28/2001	A-020	ALDICARB SULFONE	<	0	0	4	4	UG/L
12/28/2001	A-021	3-HYDROXYCARBOFURAN	<	0	0	3	3	UG/L
12/28/2001	A-026	DI(2- ETHYLHEXYL)ADIPATE	<	0	400	5	5	UG/L
12/28/2001	A-033	ETHYL-TERT-BUTYL ETHER	<	0	0	3	0	UG/L
12/28/2001	A-034	TERT-AMYL-METHYL ETHER	<	0	0	3	0	UG/L
12/28/2001	A-036	DIISOPROPYL ETHER	<	0	0	3	0	UG/L
1/27/2000	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
1/27/2000	1012	BERYLLIUM	<	0	4	1	4	UG/L
1/27/2000	1059	THALLIUM	<	0	2	1	2	UG/L
1/27/2000	1067	NICKEL	<	0	100	10	100	UG/L
1/27/2000	1097	ANTIMONY	<	0	6	6	6	UG/L
1/27/2000	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
2/25/1997	32101	BROMODICHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
2/25/1997	32102	CARBON TETRACHLORIDE	<	0	0.5	0.5	0.5	UG/L
2/25/1997	32104	BROMOFORM (THM)	<	0	0	1	0	UG/L
2/25/1997	32105	DIBROMOCHLOROMETHAN E (THM)	<	0	0	1	0	UG/L
2/25/1997	32106	CHLOROFORM (THM)	<	0	0	1	0	UG/L
2/25/1997	34010	TOLUENE	<	0	150	0.5	0.5	UG/L
2/25/1997	34030	BENZENE	<	0	1	0.5	0.5	UG/L
2/25/1997	34301	MONOCHLOROBENZENE	<	0	70	0.5	0.5	UG/L
2/25/1997	34311	CHLOROETHANE	<	0	0	0.5	0.5	UG/L
2/25/1997	34371	ETHYLBENZENE	<	0	300	0.5	0.5	UG/L
2/25/1997	34391	HEXACHLOROBUTADIENE	<	0	0	0.5	0.5	UG/L
2/25/1997	34413	BROMOMETHANE	<	0	0	0.5	0.5	UG/L
2/25/1997	34418	CHLOROMETHANE	<	0	0	0.5	0.5	UG/L
2/25/1997	34423	DICHLOROMETHANE	<	0	5	0.5	0.5	UG/L
2/25/1997	34475	TETRACHLOROETHYLENE	<	0	5	0.5	0.5	UG/L

		TRICHI OROEI HOROMETH						
2/25/1997	34488	TRICHLOROFLUOROMETH ANE	<	0	150	5	5	UG/L
2/25/1997	34496	1,1-DICHLOROETHANE	<	0	5	0.5	0.5	UG/L
2/25/1997	34501	1,1-DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
2/25/1997	34506	1,1,1-TRICHLOROETHANE	<	0	200	0.5	0.5	UG/L
2/25/1997	34511	1,1,2-TRICHLOROETHANE	<	0	5	0.5	0.5	UG/L
2/25/1997	34516	1,1,2,2- TETRACHLOROETHANE	<	0	1	0.5	0.5	UG/L
2/25/1997	34531	1,2-DICHLOROETHANE	<	0	0.5	0.5	0.5	UG/L
2/25/1997	34536	1,2-DICHLOROBENZENE	<	0	600	0.5	0.5	UG/L
2/25/1997	34541	1,2-DICHLOROPROPANE	<	0	5	0.5	0.5	UG/L
2/25/1997	34546	TRANS-1,2- DICHLOROETHYLENE	<	0	10	0.5	0.5	UG/L
2/25/1997	34551	1,2,4-TRICHLOROBENZENE	<	0	5	0.5	5	UG/L
2/25/1997	34561	1,3-DICHLOROPROPENE (TOTAL)	<	0	0.5	0.5	0.5	UG/L
2/25/1997	34566	1,3-DICHLOROBENZENE	<	0	0	0.5	600	UG/L
2/25/1997	34571	1,4-DICHLOROBENZENE	<	0	5	0.5	0.5	UG/L
2/25/1997	34668	DICHLORODIFLUOROMETH ANE (FREON 12)	<	0	1000	0.5	1000	UG/L
2/25/1997	34696	NAPHTHALENE	<	0	170	0.5	170	UG/L
2/25/1997	39175	VINYL CHLORIDE	<	0	0.5	0.5	0.5	UG/L
2/25/1997	39180	TRICHLOROETHYLENE	<	0	5	0.5	0.5	UG/L
2/25/1997	77093	CIS-1,2- DICHLOROETHYLENE	<	0	6	0.5	0.5	UG/L
2/25/1997	77128	STYRENE	<	0	100	0.5	0.5	UG/L
2/25/1997	77135	O-XYLENE	<	0	0	0.5	0	UG/L
2/25/1997	77168	1,1-DICHLOROPROPENE	<	0	0	0.5	0.5	UG/L
2/25/1997	77170	2,2-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
2/25/1997	77173	1,3-DICHLOROPROPANE	<	0	0	0.5	0.5	UG/L
2/25/1997	77222	1,2,4-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
2/25/1997	77223	ISOPROPYLBENZENE	<	0	770	0.5	770	UG/L
2/25/1997	77224	N-PROPYLBENZENE	<	0	260	0.5	260	UG/L
2/25/1997	77226	1,3,5-TRIMETHYLBENZENE	<	0	330	0.5	330	UG/L
2/25/1997	77350	SEC-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
2/25/1997	77353	TERT-BUTYLBENZENE	<	0	260	0.5	0.5	UG/L
2/25/1997	77443	1,2,3-TRICHLOROPROPANE (1,2,3,-TCP)	<	0	0.005	0.005	0.005	UG/L
2/25/1997	77562	1,1,1,2- TETRACHLOROETHANE	<	0	0	0.5	0.5	UG/L

2/25/1997	77596	DIBROMOMETHANE	<	0	0	0.5	0.5	UG/L
2/25/1997	77613	1,2,3-TRICHLOROBENZENE	<	0	0	0.5	0.5	UG/L
2/25/1997	81551	XYLENES (TOTAL)	<	0	1750	0	1750	UG/L
2/25/1997	81555	BROMOBENZENE	<	0	0	0.5	0.5	UG/L
2/25/1997	81611	TRICHLOROTRIFLUOROET HANE (FREON 113)	<	0	1200	10	10	UG/L
2/25/1997	82080	TOTAL TRIHALOMETHANES	<	0	80	0	80	UG/L
2/25/1997	A-008	2-CHLOROTOLUENE	<	0	140	0.5	0.5	UG/L
2/25/1997	A-009	4-CHLOROTOLUENE	<	0	140	0.5	140	UG/L
2/25/1997	A-010	N-BUTYLBENZENE	<	0	260	0.5	70	UG/L
2/25/1997	A-011	P-ISOPROPYLTOLUENE	<	0	0	0	0	UG/L
2/25/1997	A-012	BROMOCHLOROMETHANE	<	0	0	0.5	0.5	UG/L
2/25/1997	A-014	M,P-XYLENE	<	0	0	0.5	0	UG/L
2/13/1997	620	NITRITE (AS N)	<	0	1	0.4	0.5	mg/L
2/13/1997	1012	BERYLLIUM	<	0	4	1	4	UG/L
2/13/1997	1059	THALLIUM	<	0	2	1	2	UG/L
2/13/1997	1067	NICKEL	<	0	100	10	100	UG/L
2/13/1997	1097	ANTIMONY	<	0	6	6	6	UG/L
2/13/1997	1105	ALUMINUM		890	1000	50	200	UG/L
2/13/1997	71850	NITRATE (AS NO3)	<	0	45	2	23	MG/L
12/29/1994	95	SPECIFIC CONDUCTANCE		230	1600	0	900	US
12/29/1994	403	PH, LABORATORY		7.6	0	0	0	
12/29/1994	410	ALKALINITY (TOTAL) AS CACO3		84	0	0	0	MG/L
12/29/1994	440	BICARBONATE ALKALINITY		84	0	0	0	MG/L
12/29/1994	445	CARBONATE ALKALINITY	<	0	0	0	0	MG/L
12/29/1994	900	HARDNESS (TOTAL) AS CACO3		99	0	0	0	MG/L
12/29/1994	916	CALCIUM		29	0	0	0	MG/L
12/29/1994	927	MAGNESIUM		6.5	0	0	0	MG/L
12/29/1994	929	SODIUM		8.6	0	0	0	MG/L
12/29/1994	940	CHLORIDE		5.7	500	0	250	MG/L
12/29/1994	945	SULFATE		20	500	0.5	250	MG/L
12/29/1994	951	FLUORIDE (F) (NATURAL- SOURCE)		0.12	2	0.1	2	MG/L
12/29/1994	1002	ARSENIC	<	0	10	2	5	UG/L
12/29/1994	1007	BARIUM	<	0	1000	100	1000	UG/L
12/29/1994	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
12/29/1994	1042	COPPER	<	0	1000	50	1000	UG/L
12/29/1994	1045	IRON	<	0	300	100	300	UG/L
12/29/1994	1051	LEAD	<	0	0	5	15	UG/L

12/29/1994	1055	MANGANESE	<	0	50	20	50	UG/L
12/29/1994	1077	SILVER	<	0	100	10	100	UG/L
12/29/1994	1092	ZINC	<	0	5000	50	5000	UG/L
12/29/1994	1105	ALUMINUM	<	0	1000	50	200	UG/L
12/29/1994	1147	SELENIUM	<	0	50	5	50	UG/L
12/29/1994	38260	FOAMING AGENTS (MBAS)	<	0	0.5	0	0.5	MG/L
12/29/1994	70300	TOTAL DISSOLVED SOLIDS		100	1000	0	500	MG/L
12/29/1994	71830	HYDROXIDE ALKALINITY	<	0	0	0	0	MG/L
12/29/1994	71850	NITRATE (AS NO3)	<	0.44	45	2	23	MG/L
12/29/1994	71900	MERCURY	<	0	2	1	2	UG/L
7/28/1992	95	SPECIFIC CONDUCTANCE		260	1600	0	900	US
7/28/1992	403	PH, LABORATORY		7.5	0	0	0	
7/28/1992	410	ALKALINITY (TOTAL) AS CACO3		102	0	0	0	MG/L
7/28/1992	440	BICARBONATE ALKALINITY		102	0	0	0	MG/L
7/28/1992	445	CARBONATE ALKALINITY	<	0	0	0	0	MG/L
7/28/1992	900	HARDNESS (TOTAL) AS CACO3		110	0	0	0	MG/L
7/28/1992	916	CALCIUM		33	0	0	0	MG/L
7/28/1992	927	MAGNESIUM		7.6	0	0	0	MG/L
7/28/1992	929	SODIUM		9.5	0	0	0	MG/L
7/28/1992	940	CHLORIDE		16	500	0	250	MG/L
7/28/1992	945	SULFATE		31	500	0.5	250	MG/L
7/28/1992	951	FLUORIDE (F) (NATURAL- SOURCE)		0.12	2	0.1	2	MG/L
7/28/1992	1002	ARSENIC	<	0	10	2	5	UG/L
7/28/1992	1007	BARIUM	<	0	1000	100	1000	UG/L
7/28/1992	1027	CADMIUM	<	0	5	1	5	UG/L
7/28/1992	1034	CHROMIUM (TOTAL)	<	0	50	10	50	UG/L
7/28/1992	1042	COPPER	<	0	1000	50	1000	UG/L
7/28/1992	1045	IRON	<	0	300	100	300	UG/L
7/28/1992	1051	LEAD		11	0	5	15	UG/L
7/28/1992	1055	MANGANESE	<	0	50	20	50	UG/L
7/28/1992	1077	SILVER	<	0	100	10	100	UG/L
7/28/1992	1092	ZINC	<	0	5000	50	5000	UG/L
7/28/1992	1105	ALUMINUM	<	0	1000	50	200	UG/L
7/28/1992	1147	SELENIUM	<	0	50	5	50	UG/L
7/28/1992	38260	FOAMING AGENTS (MBAS)	<	0	0.5	0	0.5	MG/L
7/28/1992	39045	2,4,5-TP (SILVEX)	<	0	50	1	1	UG/L
7/28/1992	39340	LINDANE	<	0	0.2	0.2	0.2	UG/L

7/28/1992	39390	ENDRIN	<	0	2	0.1	0.1	UG/L
7/28/1992	39400	TOXAPHENE	<	0	3	1	1	UG/L
7/28/1992	39480	METHOXYCHLOR	<	0	30	10	30	UG/L
7/28/1992	39730	2,4-D	<	0	70	10	10	UG/L
7/28/1992	70300	TOTAL DISSOLVED SOLIDS		180	1000	0	500	MG/L
7/28/1992	71830	HYDROXIDE ALKALINITY	<	0	0	0	0	MG/L
7/28/1992	71850	NITRATE (AS NO3)		0.84	45	2	23	MG/L
7/28/1992	71900	MERCURY	<	0	2	1	2	UG/L
6/20/1989	1501	GROSS ALPHA	<	0	15	3	5	PCI/L
6/20/1989	1502	GROSS ALPHA COUNTING ERROR		0.71	0	0	0	PCI/L
2/15/1989	95	SPECIFIC CONDUCTANCE		280	1600	0	900	US
2/15/1989	403	PH, LABORATORY		8	0	0	0	
2/15/1989	410	ALKALINITY (TOTAL) AS CACO3		79	0	0	0	MG/L
2/15/1989	440	BICARBONATE ALKALINITY		78	0	0	0	MG/L
2/15/1989	445	CARBONATE ALKALINITY		1	0	0	0	MG/L
2/15/1989	900	HARDNESS (TOTAL) AS CACO3		98	0	0	0	MG/L
2/15/1989	916	CALCIUM		26	0	0	0	MG/L
2/15/1989	927	MAGNESIUM		8	0	0	0	MG/L
2/15/1989	929	SODIUM		10	0	0	0	MG/L
2/15/1989	940	CHLORIDE		5.8	500	0	250	MG/L
2/15/1989	945	SULFATE		29	500	0.5	250	MG/L
2/15/1989	951	FLUORIDE (F) (NATURAL- SOURCE)		0.22	2	0.1	2	MG/L
2/15/1989	1042	COPPER	<	50	1000	50	1000	UG/L
2/15/1989	1045	IRON	<	50	300	100	300	UG/L
2/15/1989	1055	MANGANESE	<	30	50	20	50	UG/L
2/15/1989	1092	ZINC	<	50	5000	50	5000	UG/L
2/15/1989	38260	FOAMING AGENTS (MBAS)	<	0.02	0.5	0	0.5	MG/L
2/15/1989	70300	TOTAL DISSOLVED SOLIDS		130	1000	0	500	MG/L
2/15/1989	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
2/15/1989	71850	NITRATE (AS NO3)		0.3	45	2	23	MG/L
5/14/1987	81	COLOR		5	15	0	15	UNITS
5/14/1987	86	ODOR THRESHOLD @ 60 C	<	1	3	1	3	TON
5/14/1987	95	SPECIFIC CONDUCTANCE		220	1600	0	900	US

5/14/1987	403	PH, LABORATORY		7.9	0	0	0	
5/14/1987	410	ALKALINITY (TOTAL) AS CACO3		94	0	0	0	MG/L
5/14/1987	440	BICARBONATE ALKALINITY		94	0	0	0	MG/L
5/14/1987	445	CARBONATE ALKALINITY	<	1	0	0	0	MG/L
5/14/1987	900	HARDNESS (TOTAL) AS CACO3		90	0	0	0	MG/L
5/14/1987	916	CALCIUM		24	0	0	0	MG/L
5/14/1987	927	MAGNESIUM		7.3	0	0	0	MG/L
5/14/1987	929	SODIUM		10	0	0	0	MG/L
5/14/1987	940	CHLORIDE		4.4	500	0	250	MG/L
5/14/1987	945	SULFATE		23	500	0.5	250	MG/L
5/14/1987	951	FLUORIDE (F) (NATURAL- SOURCE)		0.36	2	0.1	2	MG/L
5/14/1987	1034	CHROMIUM (TOTAL)	<	50	50	10	50	UG/L
5/14/1987	1042	COPPER	<	50	1000	50	1000	UG/L
5/14/1987	1045	IRON	<	50	300	100	300	UG/L
5/14/1987	1055	MANGANESE	<	50	50	20	50	UG/L
5/14/1987	1092	ZINC	<	50	5000	50	5000	UG/L
5/14/1987	38260	FOAMING AGENTS (MBAS)	<	0.01	0.5	0	0.5	MG/L
5/14/1987	70300	TOTAL DISSOLVED SOLIDS		148	1000	0	500	MG/L
5/14/1987	71830	HYDROXIDE ALKALINITY	<	1	0	0	0	MG/L
5/14/1987	71850	NITRATE (AS NO3)		7.8	45	2	23	MG/L
5/14/1987	82079	TURBIDITY, LABORATORY		2.5	5	0.1	5	NTU

Telegraph Creek - Treated (1210022-005)									
Sampling Date	Storet Number	Group/Constituent Identification	XMOD	Result	MCL	DLR	Trigger	Unit	
2/27/2012	680	TOTAL ORGANIC CARBON (TOC)		0.31	0	0.3	0	MG/L	
11/8/2011	680	TOTAL ORGANIC CARBON (TOC)		0.45	0	0.3	0	MG/L	
8/22/2011	680	TOTAL ORGANIC CARBON (TOC)	<	0	0	0.3	0	MG/L	
5/17/2011	680	TOTAL ORGANIC CARBON (TOC)		0.46	0	0.3	0	MG/L	

2/10/2011	680	TOTAL ORGANIC CARBON (TOC)	0.38	0	0.3	0	MG/L
11/2/2010	680	TOTAL ORGANIC CARBON (TOC)	0.45	0	0.3	0	MG/L
8/10/2010	680	TOTAL ORGANIC CARBON (TOC)	0.33	0	0.3	0	MG/L
5/25/2010	680	TOTAL ORGANIC CARBON (TOC)	0.39	0	0.3	0	MG/L
2/22/2010	680	TOTAL ORGANIC CARBON (TOC)	0.4	0	0.3	0	MG/L
11/3/2009	680	TOTAL ORGANIC CARBON (TOC)	0.65	0	0.3	0	MG/L
8/18/2009	680	TOTAL ORGANIC CARBON (TOC)	0.49	0	0.3	0	MG/L
5/12/2009	680	TOTAL ORGANIC CARBON (TOC)	0.51	0	0.3	0	MG/L
4/7/2009	680	TOTAL ORGANIC CARBON (TOC)	0.51	0	0.3	0	MG/L
3/10/2009	680	TOTAL ORGANIC CARBON (TOC)	0.45	0	0.3	0	MG/L
2/3/2009	680	TOTAL ORGANIC CARBON (TOC)	0.31	0	0.3	0	MG/L
1/20/2009	680	TOTAL ORGANIC CARBON (TOC)	0.49	0	0.3	0	MG/L
12/16/2008	680	TOTAL ORGANIC CARBON (TOC)	0.71	0	0.3	0	MG/L
11/18/2008	680	TOTAL ORGANIC CARBON (TOC)	0.54	0	0.3	0	MG/L
10/7/2008	680	TOTAL ORGANIC CARBON (TOC)	0.71	0	0.3	0	MG/L
9/9/2008	680	TOTAL ORGANIC CARBON (TOC)	0.53	0	0.3	0	MG/L
8/19/2008	680	TOTAL ORGANIC CARBON (TOC)	0.5	0	0.3	0	MG/L
7/8/2008	680	TOTAL ORGANIC CARBON (TOC)	0.53	0	0.3	0	MG/L
5/20/2008	680	TOTAL ORGANIC CARBON (TOC)	0.39	0	0.3	0	MG/L
4/15/2008	680	TOTAL ORGANIC CARBON (TOC)	0.54	0	0.3	0	MG/L
2/26/2008	680	TOTAL ORGANIC CARBON (TOC)	0.34	0	0.3	0	MG/L
5/16/1995	32101	BROMODICHLOROMETHAN E (THM)	5.4	0	1	0	UG/L
5/16/1995	32104	BROMOFORM (THM) <	0	0	1	0	UG/L
5/16/1995	32105	DIBROMOCHLOROMETHAN E (THM)	1.9	0	1	0	UG/L

5/16/1995	32106	CHLOROFORM (THM)	7.9	0	1	0	UG/L
5/16/1995	82080	TOTAL TRIHALOMETHANES	15	80	0	80	UG/L

APPENDIX B

2013 RID System Audit

RESORT IMPROVEMENT DISTRICT NO. 1 FINANCIAL STATEMENTS June 30, 2013

RESORT IMPROVEMENT DISTRICT NO. 1

FINANCIAL STATEMENTS

June 30, 2013

INTRODUCTORY SECTION

Principal Officials	1
FINANCIAL SECTION	
Independent Auditors' Report	2
Basic Financial Statements	
Government-Wide Financial Statements	
Statement of Net Position	5
Statement of Activities and Changes in Net Position	6
Fund Financial Statements	
Balance Sheet - Governmental Funds	7
Reconciliation of the Balance Sheet of Governmental Funds to the Statement of Net Position	8
Statement of Revenues, Expenditures, and Changes in Fund Balances - Governmental Funds	9
Reconciliation of the Statement of Revenues, Expenditures, and Changes in Fund Balances of Governmental Funds to the Statement of Activities	10
Statement of Net Position- Proprietary Funds	11
Statement of Revenues, Expenses, and Changes in Fund Net Position- Proprietary Funds	12
Statement of Cash Flows - Proprietary Funds	13
Notes to Financial Statements	15

RESORT IMPROVEMENT DISTRICT NO. 1

FINANCIAL STATEMENTS

June 30, 2013

District Representations Required by the United States Department of Agriculture	28
Required Supplementary Information	
Budgetary Comparison Schedule	
Statement of Revenues, Expenditures, and Changes in Fund Balances - Budget and Actual - Governmental Funds	29
Other Supplementary Information	
Combining Statement of Net Position - Proprietary Funds	30
Combining Statement of Revenues, Expenses, and Changes in Fund Net Position - Proprietary Funds	31
Combining Statement of Cash Flows - Proprietary Funds	32

INTRODUCTORY SECTION

RESORT IMPROVEMENT DISTRICT NO. 1

PRINCIPAL OFFICIALS

June 30, 2013

BOARD OF DIRECTORS

Name
Office

Susan Fox
President

Nanatte Corley
Vice-President

Michael Caldwell
Member

Vacant
Member

Vacant

GENERAL MANAGER

Member

Philip W. Young

ANDERSON, LUCAS, SOMERVILLE & BORGES, LLP

CERTIFIED PUBLIC ACCOUNTANTS

0.7 (13 (3) (11) (3) 0.4 (0) (30 (4) 0.7 (1) (4) (7) (3) 8 (3) (3) (4) (4) (4) 1338 MAIN STREFT FORTUNA, CALIFORNIA 9554B (707)725-4483 & (707) 725-4442 Toll Free: 800-794-1643 FAX: (707) 725-6340

E-mail: team@alsb.com www.alsb.com

INDEPENDENT AUDITORS' REPORT

CARCOL STREET

KANNOS FRE

LARCOL STREET

STRE

Board of Directors Resort Improvement District No. 1 Shelter Cove, California

Report on Financial Statements

We have audited the accompanying financial statements of the governmental activities, the businesstype activities, each major fund, and the aggregate remaining fund information of Resort Improvement District No. 1 as of and for the year ended June 30, 2013, and the related notes to the financial statements, which collectively comprise the District's basic financial statements as listed in the Table of Contents.

Management's Responsibility for the Financial Statements

Management is responsible for the preparation and fair presentation of these financial statements in accordance with accounting principles generally accepted in the United States of America; this includes the design, implementation, and maintenance of internal control relevant to the preparation and fair presentation of financial statements that are free from material misstatement, whether due to fraud or error.

Auditors' Responsibility

Our responsibility is to express opinions on these financial statements based on our audit. We conducted our audit in accordance with auditing standards generally accepted in the United States of America and the Minimum Audit Requirements for California Special Districts issued by the State Controller's Office. Those standards require that we plan and perform the audit to obtain reasonable assurance about whether the financial statements are free from material misstatement.

An audit involves performing procedures to obtain audit evidence about the amounts and disclosures in the financial statements. The procedures selected depend on the auditor's judgment, including the assessment of the risks of material misstatement of the financial statements, whether due to fraud or error. In making those risk assessments, the auditor considers internal control relevant to the District's preparation and fair presentation of the financial statements in order to design audit procedures that are appropriate in the circumstances, but not for the purpose of expressing an opinion on the effectiveness of the District's internal control. Accordingly, we express no such opinion. An audit also includes evaluating the appropriateness of accounting policies used and the reasonableness of significant accounting estimates made by management, as well as evaluating the overall presentation of the financial statements.

We believe that the audit evidence we have obtained is sufficient and appropriate to provide a basis for our audit opinions. Board of Directors Resort Improvement District

Opinions

In our opinion, the financial statements referred to above present fairly, in all material respects, the respective financial position of the governmental activities, the business-type activities, each major fund, and the aggregate remaining fund information of Resort Improvement District No. 1, as of June 30, 2013, and the respective changes in financial position and, where applicable, cash flows thereof for the year then ended in accordance with accounting principles generally accepted in the United States of America.

Emphasis of Matters

Management adopted the provisions of the following Governmental Accounting Standards Board Statements, which became effective during the year ended June 30, 2013 that affected the nomenclature of the financial statements:

Statement 54 – Fund Balance Reporting and Government Fund Type Definitions. See Note 16 to the financial statements for relevant disclosures.

Statement 63 – Financial Reporting of Deferred Outflows of Resources, Deferred Inflows of Resources, and Net Position. See Note 1B and 1H to the financial statements for relevant disclosures.

The emphasis of these matters does not constitute a modification to our opinion.

Other Matters

Required Supplementary Information

Management has omitted the Management's Discussion and Analysis that accounting principles generally accepted in the United States of America requires to be presented to supplement the basic financial statements. Such missing information, although not a part of the basic financial statements, is required by the Governmental Accounting Standards Board, who considers it to be an essential part of financial reporting for placing the basic financial statements in an appropriate operational, economic, or historical context. Our opinion on the basic financial statements is not affected by this missing information.

Accounting principles generally accepted in the United States of America require that the management's discussion and analysis, if provided, and the budgetary comparison schedule page 29 be presented to supplement the basic financial statements. Such information, although not a part of the basic financial statements, is required by the Governmental Accounting Standards Board, who considers it to be an essential part of financial reporting for placing the basic financial statements in an appropriate operational, economic, or historical context. We have applied certain limited procedures to the required supplementary information in accordance with auditing standards generally accepted in the United States of America, which consisted of inquires of management about the methods of preparing the information and comparing the information for consistency with management's responses to our inquiries, the basic financial statements, and other knowledge we obtained during our audit of the basic financial statements. We do not express an opinion or provide any assurance on the information because the limited procedures do not provide us with sufficient evidence to express an opinion or provide any assurance.

Board of Directors Resort Improvement District

Other Information

Our audit was conducted for the purpose of forming opinions on the financial statements that collectively comprise the Resort Improvement District No. 1's financial statements as a whole. The introductory section, and combining and individual financial statements, are presented for purposes of additional analysis and are not a required part of the basic financial statements.

The combining and individual nonmajor fund financial statements are the responsibility of management and were derived from and relate directly to the underlying accounting and other records used to prepare the basic financial statements. Such information has been subjected to the auditing procedures applied in the audit of the basic financial statements and certain additional procedures, including comparing and reconciling such information directly to the underlying accounting and other records used to prepare the basic financial statements or to the basic financial statements themselves, and other additional procedures in accordance with auditing standards generally accepted in the United States of America. In our opinion, the combining and individual nonmajor fund financial statements are fairly stated, in all material respects, in relation to the basic financial statements as a whole.

The introductory section has not been subjected to the auditing procedures applied in the audit of the basic financial statements and, accordingly, we do not express an opinion or provide any assurance on them.

Anderson, Lucas, Somerville, & Borges

January 16, 2014 Fortuna, California

BASIC FINANCIAL STATEMENTS

GOVERNMENT-WIDE FINANCIAL STATEMENTS

RESORT IMPROVEMENT DISTRICT NO. 1 Statement of Net Position June 30, 2013

ASSETS	Governmental <u>Activities</u>	Business-type Activities	Total
Cash and Cash Equivalents	\$ 22,150	\$ 1,989,597	\$ 2,011,747
Accounts Receivable, Net of Allowance	\$ 22,130	Q 1,505,557	3 2,011,747
For Doubtful Accounts of \$2,198		221,129	221,129
Assessment Receivable		516,601	516,601
Inventory of Materials and Supplies		180,828	180,828
Fixed Assets		100,020	100,020
Land	104,522	120,973	225,495
Utility Systems and Golf Course	104,022	21,868,235	21,868,235
General Plant and Equipment	3,106,865		3,106,865
Accumulated Depreciation	(808,516		(11,440,342)
Avodination Depresentation	(000,010	(10,051,020)	(11,110,512)
Total Assets	2,425,021	14,265,537	16,690,558
LIABILITIES			
Accounts Payable	9,853	49,397	59,250
Customer Deposits		23,023	23,023
Payroll and Accrued Liabilities	12,297	60,843	73,140
Due To Other Funds			
Current Portion of Long-Term Debt		75,785	75,785
State Loans	-	237,505	237,505
Total Liabilities	22,150	446,553	468,703
NET POSITION			
Invested in Capital Assets,	2,402,871	2	2,402,871
Net of Related Debt		11,044,092	11,044,092
Restricted			
Unrestricted	1	2,774,892	2,774,892
Total Net Position	\$ 2,402,871	\$ 13,818,984	\$ 16,221,855

RESORT IMPROVEMENT DISTRICT NO. 1 Statement of Activities and Changes in Net Position For the Year Ended June 30, 2013

Program Revenues

Net (Expense) Revenue and Changes in Net Position

Functions/Programs	Expenses	Charges for Services	Operating Grants and Contributions	Payments in Lieu of Services	Other Program Revenues	Total	Governmental Activities	Business-Type Activities	Total
Primary Government Governmental Activities General Government Public Safety - Fire Airport Community Development	\$ 8,630 156,808 48,005 157,750	\$ 31,321	\$ 10,146 10,000 3,734	\$ -	\$	\$ 31,321 10,146 10,000 3,734	\$ 22,691 (146,662) (38,005) (154,016)	\$ -	\$ 22,691 (146,662) (38,005) (154,016)
Total Governmental Activities	371,193	31,321	23,880			55,201	(315,992)		(315,992)
Business-type Activities Water Sewer Electric	479,716 752,335 1,725,739	303,443 241,024 1,583,606	1	Ů.	- 1	303,443 241,024 1,583,606		(176,273) (511,311) (142,133)	(176,273) (511,311) (142,133)
Total Business-type Activities	2,957,791	2,128,073		- 7		2,128,073		(829,717)	(829,717)
Total Primary Government	\$ 3,328,984	\$ 2,159,394	\$ 23,880	\$ -	\$ -	\$ 2,183,274	(315,992)	(829,717)	(1,145,709)
	Taxes Property Tax Special Asse Capital Grants Grants and Con Investment Earr Miscellaneous Transfers	es ssments tributions not Rest	ricted to Specific I	Programs			362,913 115,074 38,249 16,984 1,138 638 (315,261)	287,304 215,955 43,980 315,261	650,217 331,029 38,249 16,984 45,118 638
	Total General R	evenues, Special I	tems and Transfers	3			219,735	862,500	1,082,235
	Change in Net I	Position					(96,257)	32,783	(63,474)
	Net Position - B Prior Period A Net Position - E						2,499,128 \$ 2,402,871	13,786,201 \$ 13,818,984	16,285,329 \$ 16,221,855

The accompanying notes are an integral part of these financial statements.

FUND FINANCIAL STATEMENTS

RESORT IMPROVEMENT DISTRICT NO. 1 Balance Sheet - Governmental Funds June 30, 2013

ASSETS	
Cash and Cash Equivalents	\$ 22,150
Accounts Receivable, Net of Allowance	
for Doubtful Accounts of \$0	
Fixed Assets	3,211,387
Total Assets	\$ 3,233,537
LIABILITIES	
Accounts Payable	9,853
Payroll and Accrued Liabilities	12,297
Total Liabilities	22,150
FUND BALANCE	
Invested in Capital Assets, Net	
of Related Debt	3,211,387
Fund Balance - Unassigned	A
Total Fund Balance	3,211,387
Total Liabilities and Fund Balance	\$ 3,233,537

RESORT IMPROVEMENT DISTRICT NO. 1

Reconciliation of the Balance Sheet of Governmental Funds to the Statement of Net Position June 30, 2013

TOTAL FUND BALANCES - Governmental Funds	\$	3,211,387
Amounts reported for governmental activities in the Statement of Net Postion are different because:		
Accumulated depreciation on general fixed assets	-	(808,516)
Net Position of Governmental Activities	\$	2,402,871

RESORT IMPROVEMENT DISTRICT NO. 1 Statement of Revenues, Expenditures, and Changes in Fund Balances - Governmental Funds For the Year Ended June 30, 2013

REVENUES		
Property Taxes	\$	362,913
Harbor District Revenue		16,984
Special Assessments		115,074
Interest Income		1,138
Rent		31,321
Grants		23,880
Other	_	638
Total Revenues	4	551,948
EXPENDITURES		
General and Administrative		-
Fire Protection: Human Resources		40,154
Fire Protection: Other Expenditures		40,620
Community Center: Human Resources		70,979
Community Center: Other Expenditures		47,167
Capital Outlay	-	37,767
Total Expenditures	_	236,687
Excess of Revenues Over Expenditures		315,261
Allocated to Proprietary Funds		(315,261)
Excess of Revenues and Other Financing		
Sources Over Expenditures and		
Other Financing Uses	·	
FUND BALANCES - Beginning of Year	-	
FUND BALANCES - End of Year	\$	

RESORT IMPROVEMENT DISTRICT NO. 1

Reconciliation of the Statement of Revenues, Expenditures, and Changes in Fund Balances of Governmental Funds to the Statement of Activities For the Year Ended June 30, 2013

NET CHANGE IN FUND BALANCES - Total Governmental Funds	\$	3
Amounts reported for governmental activities in the Statement of Activities are different because:		
Purchases of Fixed Assets		38,249
Depreciation expense has not been included in the Governmental Fund Financial Statements.	1	(134,506)
Change in Net Position of Governmental Activities	S	(96,257)

RESORT IMPROVEMENT DISTRICT NO. 1 Statement of Net Position - Proprietary Funds June 30, 2013

ASSETS	
Current Assets	
Cash and Cash Equivalents	\$ 1,989,597
Accounts Receivable, Net of Allowance	
For Doubtful Accounts of \$2,198	221,129
Assessment Receivable	516,601
Inventory of Materials and Supplies	180,828
Total Current Assets	2,908,155
Noncurrent Assets	
Fixed Assets	21,868,235
Accumulated Depreciation	(10,631,826)
Land	120,973
Total Noncurrent Assets	11,357,382
Total Assets	14,265,537
LIABILITIES	
Current Liabilities	40,000
Accounts Payable	49,397
Customer Deposits	23,023
Payroll and Accrued Liabilities	60,843
Due To Other Funds	75 705
Current Portion of Long-Term Debt	75,785
Total Current Liabilities	209,048
Noncurrent Liabilities	222.00
State Loans	237,505
Total Liabilities	446,553
NET POSITION	
Invested in Capital Assets	
Net of Related Debt	11,044,092
Restricted	
Unrestricted	2,774,892
Total Net Position	\$ 13,818,984

The accompanying notes are an integral part of these financial statements.

RESORT IMPROVEMENT DISTRICT NO. 1

Statement of Revenues, Expenses, and Changes in Fund Net Position - Proprietary Funds For the Year Ended June 30, 2013

OPERATING REVENUES		
Utility Service Charges	\$	1,838,012
Capital Facility Charges		74,645
Special Assessments		215,955
Connection, Extension and Other Fees		194,253
Other		21,163
Total Operating Revenue		2,344,028
OPERATING EXPENSES		
Human Resources		1,219,071
Materials, Supplies and Services		363,325
Power		491,336
Insurance	40	38,334
Depreciation		729,109
Allocated Administrative Costs		97,971
Total Operating Expenses		2,939,146
Operating Income (Loss)		(595,118)
NON-OPERATING REVENUES (EXPENSES)		
Interest		43,980
Property Taxes		287,304
Interest Expense		(18,644)
Grant Revenue		
Transfers In		315,261
Transfers Out		
Total Non-Operating Revenues (Expenses)		627,901
Net Income		32,783
TOTAL NET POSITION - Beginning of Year		13,786,201
TOTAL NET POSITION - End of Year	\$	13,818,984

RESORT IMPROVEMENT DISTRICT NO. 1 Statement of Cash Flows - Proprietary Funds For the Year Ended June 30, 2013

CASH FLOWS FROM OPERATING ACTIVITIES	
Receipts from Customers and Users	\$ 2,368,264
Receipts from Interfund Services Provided	
Payments to Suppliers	(1,256,945)
Payments to Employees	(1,218,958)
Net Cash Provided (Used) by Operating Activities	(107,639)
CASH FLOWS FROM NON-CAPITAL	
FINANCING ACTIVITIES	
Other Non-Operating Revenues	287,304
Other Non-Operating Expenses	-
Assessment Principal Collected	92,063
Operating Transfers In	315,261
Operating Transfers Out	
Net Cash Provided (Used) by Non-Capital	
Financing Activities	694,628
CASH FLOWS FROM CAPITAL AND	
RELATED FINANCING ACTIVITIES	
Acquisition of Fixed Assets	(1,128,312)
Capital Grants	4
Payment of Long Term Debt	(146,711)
Interest Paid on Long Term Debt	(18,644)
Change in Amounts Payable from Restricted Assets	
Net Cash Provided (Used) by Capital and	
Related Financing Activities	(1,293,667)
CASH FLOWS FROM INVESTMENT ACTIVITIES	
Interest Received	43,980
Net Cash Provided by Investing Activities	43,980
INCREASE (DECREASE) IN CASH AND CASH EQUIVALENTS	(662,698)
CASH AND CASH EQUIVALENTS - Beginning of Year	2,652,295
CASH AND CASH EQUIVALENTS - End of Year	\$ 1,989,597

RESORT IMPROVEMENT DISTRICT NO. 1 Statement of Cash Flows - Proprietary Funds For the Year Ended June 30, 2013

RECONCILIATION OF OPERATING INCOME (LOSS) TO NET CASH PROVIDED (USED) BY OPERATING ACTIVITIES

Operating Income (Loss)	\$ (595,118)
Adjustments to Reconcile Operating Income (Loss) to Net Cash Provided (Used) by Operating Activities:	
Depreciation	729,109
Changes in Assets and Liabilities:	
Receivables Materials Accounts Payable Deposits Accrued Liabilities	 25,555 (1,318) (265,980) 597 (484)
Net Cash Provided (Used) by Operating Activities	\$ (107,639)

NOTES TO THE FINANCIAL STATEMENTS

NOTE 1 - SUMMARY OF SIGNIFICANT ACCOUNTING POLICIES

The Resort Improvement District No. 1 (District) was formed April 29, 1965 under the provisions of the Public Resources Code of the State of California. The District is governed by an elected board of directors and provides fire, recreation and utility services to the unincorporated area in Humboldt County generally known as Shelter Cove.

The financial statements of the Resort Improvement District No. I have been prepared in conformity with generally accepted accounting principles (GAAP) as applied to government units. The Governmental Accounting Standards Board is the accepted standard-setting body for establishing governmental accounting and financial reporting principles. The more significant of the District's accounting policies are described below.

Reporting Entity

There are no significant activities or Districts on which the District exercises oversight responsibility which require inclusion in the financial statements for the year ended June 30, 2013. The following criteria regarding manifestation of oversight were considered by the District in its evaluation of Districts and activities to include or exclude:

Financial Interdependency - The District is responsible for its debts and is entitled to surpluses. No separate agency receives a financial benefit, nor imposes a financial burden on the District.

Election of Governing District - The locally elected governing board is exclusively responsible for all public decisions and is accountable for the decisions it makes.

Designation of Management - The governing board appoints District management. All activities under the purview of management are within the scope of the reporting entity and management is accountable to the governing board for the activities being managed.

Significant Influence on Operations - The governing board has the legal authority to significantly influence operations. This authority includes, but is not limited to, adoption of the budget, control over all assets, including facilities and properties, short-term borrowing, long term borrowing as limited by state law, signing contracts, and developing the programs to be provided.

Accountability of Fiscal Matters - The responsibility and accountability over all funds is vested in the District management.

Basic Financial Statements - Government-wide Statements

The District's basic financial statements include both government-wide (reporting the District as a whole) and fund financial statements (reporting the District's major

NOTE 1 - SUMMARY OF SIGNIFICANT ACCOUNTING POLICIES (Continued)

Basic Financial Statements - Government-wide Statements (Continued)

funds). Both the government-wide and fund financial statements categorize primary activities as either governmental or business type. The District's fire department, parks and recreation, airport and general administrative services are classified as governmental activities. The District's water, sewer services, and electric activities are classified as business-type activities.

In the Government-wide Statement of Net Position, both the governmental and business type activities columns are presented on a consolidated basis and are reported on a full accrual, economic resource basis. The District's net position is reported in three parts – invested in capital assets, net of related debt; restricted net assets; and unrestricted net assets. At the end of each fiscal year, all current year activities of the general government fund is allocated and transferred to the business type activities. The District does not keep a separate general fund bank account.

Fund Accounting

The District uses funds to report on its financial position and the results of its operations. Fund accounting is designed to demonstrate legal compliance and to aid financial management by segregating transactions related to certain government functions or activities.

A fund is a separate accounting entity with a self-balancing set of accounts. Funds are classified into three categories: governmental, proprietary and fiduciary. Each category is divided into separate "fund types."

Governmental funds are used to account for all or most of a government's general activities, including the collection and disbursement of earmarked monies (special revenue funds), the acquisition or construction of general fixed assets (capital projects funds), and the servicing of general long term debt (debt service funds). The general fund is used to account for all activities not accounted for in some other fund.

<u>Proprietary funds</u> are used to account for activities similar to those found in the private sector, where the determination of net income is necessary or useful to sound financial administration. Goods or services from such activities can be provided either to outside parties (enterprise funds) or to other departments or agencies primarily within the District (internal service funds). The District maintains enterprise funds for its electric utility, water utility, sewer utility and golf recreation activities.

NOTE 1 - SUMMARY OF SIGNIFICANT ACCOUNTING POLICIES (Continued)

Fund Accounting (Continued)

<u>Fiduciary funds</u> are used to account for assets held on behalf of outside parties, including other governments, or on behalf of other funds within the District. When these assets are held under the terms of a formal trust agreement, either a pension trust fund, a nonexpendable trust fund or an expendable trust fund is used. The terms "nonexpendable" and "expendable" refer to whether or not the government is under an obligation to maintain the trust principal. Agency funds generally are used to account for assets that the District holds on behalf of others as their agent.

Fund Balances, Reserves and Designations

In the Fund financial statements, fund balances represent the net current assets of each fund. The District's fund balances are classified based on spending constraints imposed on use of resources. For programs with multiple funding sources, the District prioritizes and expends funds in this order: Restricted, Committed, Assigned, and Unassigned. These are defined as follows:

Nonspendable represents balances set aside to indicate items that do not represent available or spendable resources, even though they are a component of assets. Fund balances required to be maintained intact, such as Permanent Funds, and assets not expected to be converted to cash such as prepaids, are included.

Restricted fund balances have external restrictions imposed by creditors, grantors, contributors, laws, regulations, or legislation which require the resources be used only for specific purposes.

Committed fund balances have constraints imposed by formal action of the District Board, such as an Ordinance, which may be altered only by the same formal action of the District Board.

Assigned fund balances are amounts constrained by the District Boards intent to be used for a specific purpose, but are neither restricted nor committed.

Unassigned fund balances represent residual amounts that have not been restricted, committed, or assigned. This includes the residual general fund balance.

NOTE 1 - SUMMARY OF SIGNIFICANT ACCOUNTING POLICIES (Continued)

New Accounting Pronouncements

In June 2011, the GASB issued Statement 63, Financial Reporting of Deferred Outflows of Resources, Deferred Inflows of Resources, and Net Position, which changed the structure of a government balance sheet.

Deferred Outflow – represents the consumption of a government's net assets that is applicable to a future period.

Deferred Inflow – represents the acquisition of net assets that is applicable to a future reporting period.

In March 2012, GASB issued Statement No. 65, Items Previously Reported as Assets and Liabilities, which amends the classification of certain items to be included as deferred inflows and outflows.

Management has determined that the implementation of GASB 63 and 65 will have no effect on the financial statements. The District currently has no items that qualify to be reported under the classification of Deferred Outflows or Inflows of resources.

Basis of Accounting

The accounting and financial reporting applied to a fund is determined by its measurement focus. All governmental funds and expendable trusts funds are accounted for using a current financial resources measurement focus. With this measurement focus, only current assets and current liabilities generally are included on the balance sheet. Operating statements of these funds present increases (i.e., revenues and other financing sources) and decreases (i.e., expenditures and other financing uses) in net current assets.

All proprietary funds are accounted for on a flow of economic resources measurement focus. With this measurement focus, all assets and liabilities associated with the operation of these funds are included in the balance sheet. Fund equity (i.e., net total assets) is segregated into contributed capital and retained earnings components. Proprietary fund type operating statements present increases (i.e., revenues) and decreases (i.e., expenses) in net total assets.

The modified accrual basis of accounting is used by governmental fund types, expendable trust funds, and agency funds. Under the modified accrual basis of accounting, revenues are recognized when susceptible to accrual (i.e., when they become both measurable and available). "Measurable" means the amount of the transaction can be determined and "available" means collectible within the current period or soon enough thereafter to be used to pay liabilities of the current period.

NOTE 1 - SUMMARY OF SIGNIFICANT ACCOUNTING POLICIES (Continued)

Basis of Accounting (Continued)

The District considers property taxes within governmental funds as available if they are collected within 60 days after year end. A one-year availability period is used for revenue recognition for all other governmental fund revenues. Expenditures are recorded when the related fund liability is incurred. Principal and interest on general long term debt are recorded as fund liabilities when due or when amounts have been accumulated in the debt service fund for payments to be made early in the following year.

The accrual basis of accounting is utilized by proprietary fund types, pension trust funds and nonexpendable trust funds. Under this method revenues are record when earned and expenses are recorded at the time liabilities are incurred. Water and sewer services charges are recognized as monthly utility bills are prepared.

Budgets

A budget is adopted for the general fund on a basis consistent with generally accepted accounting principles. All annual appropriations lapse at fiscal year-end. The board has given the District Manager authority to make subsequent budget adjustments. It is this final adjusted budget which is reported in these financial statements.

Cash and Cash Equivalents

Cash includes amounts in demand deposits, as well as short-term investments with a maturity date within three months of the date acquired by the District.

Short-term Interfund Receivables/Payables

During the course of operations, transactions occur between individual funds for goods or services rendered. These receivables and payables are classified as "Due from Other Funds" or "Due to Other Funds" on the balance sheet. Short-term interfund loans are reported as "Cash Advances to/from Other Funds."

Supplies Inventory

Materials and supplies inventory is priced at cost using the first-in, first-out method.

GAAP Election

Proprietary funds have selected consistently not to follow Financial Accounting Standards Board pronouncements issued subsequent to November 30, 1989 as permitted under Government Accounting Standards Board Statement No. 20.

NOTE 1 - SUMMARY OF SIGNIFICANT ACCOUNTING POLICIES (Continued)

Compensated Absences

The District allows employees to accumulate vacation time limited to one year, which is paid in cash upon termination. Sick leave may be accumulated without limit. Unused sick leave is credited to PERS upon retirement. The liability for compensated absences is accrued during the fiscal period in which it is earned.

Fixed Assets

All fixed assets are valued at historical cost. Donated assets are valued at their estimated fair market value on the date received. Repairs and maintenance are recorded as expenses; renewals and betterments are capitalized. Depreciation is taken on these assets using the straight-line method over their useful lives, ranging from 10 to 40 years.

Building and equipment of the enterprise funds are depreciated using the straightline method over useful lives ranging over 20 to 100 years for buildings and improvements, 15 to 50 years for pipe, poles and appurtenances and 3 to 15 years for equipment.

Property Taxes and Assessments

Secured property taxes are levied March 1 on all secured real property and are due and payable November 1 and February 1 of the following fiscal year. Unsecured property taxes are payable in one installment on or before August 31. The County of Humboldt is responsible for assessing, collecting and distributing property taxes and assessments in accordance with California statutory law.

A tax rate of \$1.00 per \$100.00 of assessed valuation is levied on all property within the County. The District's share of the taxes collected is determined by state law. The County distributes to the District its full share of the taxes whether actually collected or not, All delinquent taxes along with interest and penalties belong to the County.

Assessments are levied against property located within the District and consist of water standby fees assessed at \$8.00 per parcel for each uninhabited parcel for which service could be made available. A special utility tax is \$80.00 per parcel for every parcel within the District.

A one-time special assessment was made during the 1997-98 fiscal year to fund improvements to the sewer treatment facility. An assessment district was formed under the Municipal Improvement Act of 1913 (California Streets and Highways Code section 10000 et. Seq.). Bonds were issued in July of 1998 for assessments remaining unpaid by the payment due date. A special tax rate applies to each parcel against which such bonds were issued and will be levied each year until the entire principal and interest amounts are paid.

NOTE 1 - SUMMARY OF SIGNIFICANT ACCOUNTING POLICIES (Continued)

Long-term Obligations

Long-term debt is recognized as a liability of a governmental fund when due, or when resources have been accumulated in the debt service fund for payment early in the following year. For other long-term obligations, only that portion expected to be financed from expendable, available financial resources is reported as a fund liability of a governmental fund. Long-term liabilities expected to be financed from proprietary fund operations are accounted for in those funds.

Fund Equity

Contributed capital is recorded in proprietary funds that have received capital contributions from developers, customers, and other sources. Reserves represent those portions of fund equity not available for appropriation for expenditure or legally segregated for a specific future use.

Debt Discounts/Issuance Costs

In governmental fund types, debt discounts and issuance costs are recognized in the current period. Debt discounts and issuance costs for proprietary fund types are deferred and amortized over the term of the debt using the bonds-outstanding method, which approximates the effective interest method. Debt discounts are presented as a reduction of the face amount of debt payable, whereas issuance costs are recorded as deferred charges and are presented in the financial statements under "Other Assets".

Interfund Transactions

Quasi-external transactions are accounted for as revenues, expenditures or expenses. Transactions that constitute reimbursements to a fund for expenditures/expenses initially made from it that are properly applicable to another fund, are recorded as reductions of expenditures/expenses in the fund that is reimbursed.

All other interfund transactions, except quasi-external transactions and reimbursements, are reported as transfers. Nonrecurring or nonroutine permanent transfers of equity are reported as residual equity transfers. All other interfund transfers are reported as operating transfers.

Estimates

The preparation of financial statements in conformity with generally accepted accounting principles requires management to make estimates and assumptions that affect certain reported amounts and disclosures.

NOTE 2 - STATE LOANS

State Revolving Fund

On January 27, 1999, the District signed a loan contract with the State Water Resources Control Board. Under the contract, the State loaned the District \$1,316,665 from the State Revolving Fund (SRF). The State Revolving Fund was created by a grant from the United States Environmental Protection Agency under the Capitalization Grants for State Revolving Funds program.

The loan bears interest at 2.2 percent per annum. The repayment schedule calls for annual payments of \$82,677, commencing September 1, 2000 with the final payment due September 1, 2019. Total interest to maturity is \$335,053.

The contract provides that all future debt incurred by the District shall be on parity with, or subordinate to, the SRF loan. The contract also provides that the District shall maintain a dedicated source of revenue sufficient to provide reasonable assurance of repayment. The revenue source contemplated, and so dedicated, is the repayment by the Assessment District of interest and principal of the Series A bonds.

The proceeds of the loan are to benefit the Shelter Cove sewer system improvement project. The loan proceeds were used to acquire the Assessment District Series A bonds. Those funds were then paid over to the District by the Assessment District and utilized to fund the project.

NOTE 3 - PROPERTY TAX REVENUES

During the 1996/97 fiscal year, the County apportioned the District its share of the general tax rate under the "Teeter Plan". Under this plan, the full amount of the levy is paid to the District, whether collected or not. All interest and penalties for late payment of taxes are retained by the County.

NOTE 4 - COMMITMENTS

As a condition of an agreement between the Shelter Cove Resort Improvement District and the National Oceanic & Atmospheric Administration (NOAA) addressing the creation of a permanent fish passage solution at the dam site on Telegraph Creek, the District is required to design and construct a suitable "Project" at the dam site that meets certain minimum criteria of NOAA Fisheries pursuant to the Endangered Species Act (ESA) for upstream and downstream passage of adult juvenile steelhead. The Project may include, but is not limited to, complete removal of the dam. The deadline for substantial complete installation and construction of the Project is December 31, 2014. Failure to meet this deadline could trigger a penalty assessment of up to \$20,000. The total project cost is estimated at between \$150,000 to \$708,000 expense to the District, depending on final actual grant revenues awarded for the Project.

NOTE 5 - FIXED ASSETS

The following is a summary of the changes in the general fund fixed assets during the fiscal year.

	Ju	ne 30, 2012	Addi	tions	Retire	ements	June 30, 2013
Land and Land Rights	\$	104,522	S		\$	- 2	\$104,522
Buildings		575,525		-		- 2	575,525
Airport Improvements		1,045,076		1,2		- 2	1,045,076
Airport Equipment		18,629		- 4		1.0	18,629
Fire Equipment		1,172,212	19,	227		1.5	1,191,439
Office Equipment		31,775	1,	189		9	32,964
Parks		222,704	17,	834		18	240,538
Intangibles		2,694		-	6		2,694
	\$	3,173,137	\$ 38,	250	\$		\$3,211,387

The following is a summary of proprietary fund type (enterprise funds) fixed assets:

Electrical System	6,836,991
Land	120,973
Allowance for Depreciation	(3,698,131)
	3,259,833
Water System	6,737,794
Allowance for Depreciation	(2,795,271)
	3,942,523
Sewer System	8,293,450
Allowance for Depreciation	(4,138,424)
	4,155,026
Total	11,357,382

NOTE 6 - CASH AND CASH EQUIVALENTS

The District's temporary investments are all deposits in federally insured banks or in investment pools maintained by the Humboldt County Treasurer and the State of California. The carrying amount is the account balance which includes interest. At times such investments may be in excess of the Federal Deposit Insurance corporation (FDIC) insurance limits of \$250,000.

The following summarizes cash and cash equivalents at June 30, 2013:

	1 8 327 201	Total	
Governn	nental Funds:		
	Insured by FDIC	\$ 22,151	
	Imprest Cash		
		\$ 22,151	
Proprieta	ary Funds:		
	Pooled with County	\$1,155,988	
	Pooled with State	366,248	
	Insured by FDIC	467,068	
	Imprest Cash	293	
		\$1,989,597	
Total		\$2,011,748	

NOTE 7 - RISK MANAGEMENT

The District is exposed to various risks of loss related to torts; theft of, damage to, and destruction of assets; errors and omissions; injuries to employees; and natural disasters. The District maintains commercial and risk pool coverage covering each of those risks of loss. Management believes such coverage is sufficient to preclude any significant uninsured losses to the District. Settled claims have not exceeded this coverage in any of the past three years.

RESORT IMPROVEMENT DISTRICT NO. 1 Notes to the Financial Statements June 30, 2013

NOTE 8 - RETIREMENT PLAN

- A. Plan Description: The District's defined benefit pension plan provides retirement and disability benefits, annual cost-of-living adjustments, and death benefits to plan members and beneficiaries. The Plan is part of the Public Agency portion of the California Public Employees Retirement System (CalPERS), an agent multiple-employer plan administered by CalPERS, which acts as a common investment and administrative agent for participating public employers within the State of California. A menu of benefit provisions as well as other requirements is established by State statutes within the Public Employees' Retirement Law. The District selects optional benefits provisions from the benefit menu by contract with CalPERS and adopts those benefits through Board action. CalPERS issues a separate comprehensive annual financial report. Copies of the CalPERS' annual financial report may be obtained from the CalPERS Executive Office, 400 P Street, Sacramento, CA 95814.
- B. Funding Policy: Active plan members in the Plan are required to contribute 7% of their annual covered salary. The District is required to contribute the actuarially determined remaining amounts necessary to fund the benefits for its members. The actuarial methods and assumptions used are those adopted by the CalPERS Board of Administration. The required employer contribution is an actuarially determined rate. The contribution requirements of the plan members are established by State statute and the employer contribution rate is established and may be amended by CalPERS. The District's contributions to CalPERS for the fiscal years ended June 30, 2013 and 2012 were \$95,968 and \$89,063, respectively, and equal the total required contributions for each year.

NOTE 9 - BUDGETS

The District adopts an annual budget for the General Fund after conducting public hearings. Planning budgets are prepared for the enterprise funds. No budget comparison has been presented in these financial statements for the enterprise funds since the demand for goods and services primarily determines the revenue available and the expenses incurred.

RESORT IMPROVEMENT DISTRICT NO. 1 Notes to the Financial Statements June 30, 2013

NOTE 10 - LOAN PAYABLE

The following schedule reflects the debt service requirements of the District's loan payable as of June 30, 2013:

	Balance 6/30/12	_ Add	itions	Principal Payments		Balance 5/30/13
SWRCB	\$ 460,001	\$	114	\$ (146,710)	S	313,291
Loan						

The interest rate on the State Water Resources Control Board Loan is 2.2% per annum and payments are due in September.

Following are the principal and interest requirements to maturity for the following four years:

37	CLY	D 1:
Y ear	S	Ending

June 30,	I	rincipal	I	nterest	_	Total
2014	\$	75,785	\$	6,892	\$	82,677
2015		77,454		5,225		82,679
2016		79,157		3,521		82,678
2017		80,895		1,780	-	82,675
Totals	\$	313,291	\$	17,418	\$	330,709

NOTE 11 - FINANCIAL STATEMENT PRESENTATION

Certain amounts from the prior year financial statements have been reclassified to conform to the current year presentation.

NOTE 12 - SUBSEQUENT EVENTS

Management has evaluated all known events that have occurred after June 30, 2013, and through January 16, 2014, the date when this financial statement was available to be issued, for inclusion in the financial statements and footnotes.

RESORT IMPROVEMENT DISTRICT NO. 1 Notes to the Financial Statements June 30, 2013

NOTE 13 - HUMAN RESOURCES RECONCILIATION

The District allocates total human resources expense, including payroll and wages, payroll taxes, worker's comp, health insurance and all other related benefits to numerous funds and accounts. A reconciliation of these amounts is provided below for the year ended June 30, 2013:

Total Labor Expenses and Benefits	<u>\$1,457,596</u>
Reported in Financial Statements:	
Statement of Revenues, Expenditures and Changes in Fund Balances – Governmental Funds (Page 8)	
Community Center	\$ 70,979
Fire Protection	40,154
Statement of Revenues, Expenses and Changes	
in Fund Net Assets - Proprietary Funds (Page 11)	1,219,071
Transferred to Capital Labor and Capitalized into	
Fixed Assets	127,392
Total Labor Expenses and Benefits	\$1,457,596

DISTRICT REPRESENTATIONS REQUIRED BY THE UNITED STATES DEPARTMENT OF AGRICULTURE

RESORT IMPROVEMENT DISTRICT NO. 1

District Representations Required by the United States Department of Agriculture June 30, 2013

- 1. The District has complied with requirements of the Sewer Revenue Bond Resolution, including the maintenance of cash reserves.
- All audit adjustments have been recorded in the District's books of account.
- 3. All funds of the District are on deposit with institutions insured by the Federal government, with the County of Humboldt or with the State of California.
- The district is exempt from Federal and California income taxes under Internal Revenue Code Section 115 and the constitution of the State of California.
- The District's accounting records are adequate to provide an audit trail sufficient to support an opinion by an independent auditor.
- 6. The District's primary assets in terms of cost are the above ground and underground systems of electrical, water and sewer lines. These require very little physical control. The materials and supplies inventory is controlled by a general ledger account. A physical inventory is taken periodically to verify this record.

Trucks and autos are controlled by the State Licensing Agency.

Other assets are minimal. The District directors and management are involved with the operations closely enough to provide a good informal control over these items.

- The District has implemented all prior year audit recommendations.
- 8. Enterprise fund accounts receivable were aged as follows at June 30, 2013:

0-30	\$ 158,815
31-60 Days	12,153
Over 60 Days	52,359
	\$ 223,327

REQUIRED SUPPLEMENTARY INFORMATION

BUDGETARY COMPARISON SCHEDULE

RESORT IMPROVEMENT DISTRICT NO. 1

Statement of Revenues, Expenses, and Changes in Fund Balances

Budget and Actual - Governmental Funds For the Year Ended June 30, 2013

		General Fund	
	Original and Final Budget	Actual	Variance Favorable (Unfavorable)
REVENUES			
Property Taxes	\$ 462,527	\$ 362,913	\$ (99,614)
Grants	10,000	23,880	13,880
Special Assessments	114,410	115,074	664
Interest Income	2,000	1,138	(862)
Rent	31,154	31,321	167
Fire Protection Reimbursement	19,463	16,984	(2,479)
Other	400	638	238
Total Revenues	639,954	551,948	(88,006)
EXPENDITURES			
Current;			
General and Administrative	506,480		506,480
Fire Protection	62,085	80,774	(18,689)
Community Center	46,063	118,146	(72,083)
Noncurrent:			
Capital Outlay	62,800	37,767	25,033
Total Expenditures	677,428	236,687	440,741
Total Expenditures Allocated to Proprietary Funds			
Net Total Expenditures	677,428	236,687	440,741
Excess of Revenues Over Expenditures	(37,474)	315,261	(352,735)
Allocated to Proprietary Funds	37,474	(315,261)	352,735
Excess (Deficiency) of Revenue and Other Financing Sources Over (Under) Expenditures			
and Other Financing Uses	\$ -		\$ -
FUND BALANCE - Beginning			
FUND BALANCE - Ending		\$ -	

OTHER SUPPLEMENTARY INFORMATION

RESORT IMPROVEMENT DISTRICT NO. 1 Combining Statement of Net Position - Proprietary Funds June 30, 2013

	Electric Utility	Water Utility	Sewer Utility	Total
ASSETS	CHINY	<u>ounty</u>	Cunty	1 Dias
Current Assets				
Cash and Cash Equivalents	\$ 354,333	\$ 1,249,602	\$ 385,662	\$ 1,989,597
Accounts Receivable, Net of Allowance	4 44,056	4 -14-0-13-0	2011000	780708001
For Doubtful Accounts of \$2,198	174,692	22,843	23,594	221,129
Assessment Receivable	31,417,55		516,601	516,601
Inventory of Materials and Supplies	117,892	59,345	3,591	180,828
Total Current Assets	646,917	1,331,790	929,448	2,908,155
Noncurrent Assets				
Fixed Assets	6,836,991	6,737,794	8,293,450	21,868,235
Accumulated Depreciation	(3,698,131)	(2,795,271)	(4,138,424)	(10,631,826)
Land	120,973			120,973
Total Noncurrent Assets	3,259,833	3,942,523	4,155,026	11,357,382
Total Assets	3,906,750	5,274,313	5,084,474	14,265,537
LIABILITIES				
Current Liabilities				
Accounts Payable	34,612	12,194	2,591	49,397
Customer Deposits	9,957	7,483	5,583	23,023
Payroll and Accrued Liabilities	31,768	12,487	16,588	60,843
Current Portion of Long-Term Debt		1.0	75,785	75,785
Total Current Liabilities	76,337	32,164	100,547	209,048
Noncurrent Liabilities				
State Loans		-	237,505	237,505
Total Liabilities	76,337	32,164	338,052	446,553
NET POSITION				
Invested in Capital Assets,				
Net of Related Debt	3,259,833	3,942,523	3,841,736	11,044,092
Restricted	-)****)****	- 14 1416 40	-30.1.17.00	
Unrestricted	570,580	1,299,626	904,686	2,774,892
Total Net Position	\$ 3,830,413	\$ 5,242,149	\$ 4,745,422	\$ 13,818,984

RESORT IMPROVEMENT DISTRICT NO. 1

Combining Statement of Revenues, Expenses, and Changes in Fund Net Position- Proprietary Funds For the Year Ended June 30, 2013

OPERATING REVENUES	Electric <u>Utility</u>	Water <u>Utility</u>	Sewer <u>Utility</u>	Total
Utility Service Charges	\$ 1,447,925	\$ 190,802	\$ 199,285	\$ 1,838,012
Capital Facility Charges	17,650	43,050	13,945	74,645
Special Assessments	17,050	215,955	-	215,955
Connection, Extension		210,500		210,500
and Other Fees	109,553	69,591	15,109	194,253
Other Operational Income	8,478	•	12,685	21,163
Suite Specialisma meeting				
Total Operating Income	1,583,606	519,398	241,024	2,344,028
OPERATING EXPENSES				
Human Resources	701,163	205,582	312,326	1,219,071
Materials, Supplies and Services	192,120	72,944	98,261	363,325
Power	491,336	-		491,336
Insurance	10,800	16,176	11,358	38,334
Depreciation	261,416	174,562	293,131	729,109
Allocated Administrative Costs	68,904	10,452	18,615	97,971
Total Operating Expenses	1,725,739	479,716	733,691	2,939,146
Operating Income (Loss)	(142,133)	39,682	(492,667)	(595,118)
NON-OPERATING REVENUES (EXPENSES)				
Interest	-	-	43,980	43,980
Property Taxes	7,794	82,268	197,242	287,304
Interest Expense	-	-	(18,644)	(18,644)
Grant Revenue		-		
Transfers In	211,225	69,358	34,678	315,261
Transfers Out				
Total Non-Operating Revenues	219,019	151,626	257,256	627,901
Net Income (Loss)	76,886	191,308	(235,411)	32,783
TOTAL NET POSITION - Beginning	3,753,527	5,050,841	4,981,833	13,786,201
TOTAL NET POSITION - Ending	\$ 3,830,413	\$ 5,242,149	\$ 4,746,422	\$ 13,818,984

RESORT IMPROVEMENT DISTRICT NO. 1 Combining Statement of Cash Flows - Proprietary Funds For the Year Ended June 30, 2013

CASH FLOWS FROM	Electric <u>Utility</u>	Water <u>Utility</u>	Sewer <u>Utility</u>	<u>Total</u>
OPERATING ACTIVITIES Receipts from Customers and Users Receipts from Interfund Services Provided	\$ 1,591,926	\$ 534,435	\$ 241,903	\$ 2,368,264
Payments to Suppliers Payments to Employees Adjustment from Prior Period Adjustment	(955,773) (699,270)	(158,130) (214,941)	(143,042) (304,747)	(1,256,945) (1,218,958)
Net Cash Provided (Used) by Operating Activities	(63,117)	161,364	(205,886)	(107,639)
CASH FLOWS FROM NON-CAPITAL FINANCING ACTIVITIES Other Non-Operating Revenues Other Non-Operating Expenses Assessment Principal Collected Operating Transfers In Operating Transfers Out	7,794 - - 211,225	82,268 - - 69,357	197,242 - 92,063 34,679	287,304 92,063 315,261
Net Cash Provided (Used) by Non-Capital Financing Activities	219,019	151,625	323,984	694,628
CASH FLOWS FROM CAPITAL AND RELATED FINANCING ACTIVITIES Acquisition of Fixed Assets Capital Grants Payment of Long Term Debt Interest Paid on Long Term Debt	(610,010) - - -	(359,136)	(159,166) - (146,711) (18,644)	(1,128,312) - (146,711) (18,644)
Net Cash Provided (Used) by Capital and Related Financing Activities	(610,010)	(359,136)	(324,521)	(1,293,667)
CASH FLOWS FROM INVESTMENT ACTIVITIES Interest Received			43,980	43,980
Net Cash Provided by Investing Activities			43,980	43,980
INCREASE (DECREASE) IN CASH AND CASH EQUIVALENTS	(454,108)	(46,147)	(162,443)	(662,698)
CASH AND CASH EQUIVALENTS Beginning of Year	808,441	1,295,749	548,105	2,652,295
CASH AND CASH EQUIVALENTS End of Year	\$ 354,333	\$ 1,249,602	\$ 385,662	\$ 1,989,597

RESORT IMPROVEMENT DISTRICT NO. 1 Combining Statement of Cash Flows - Proprietary Funds For the Year Ended June 30, 2013

	Electric <u>Utility</u>	Water <u>Utility</u>	Sewer <u>Utility</u>	Total
RECONCILIATION OF OPERATING INCOME (LOSS) TO NET CASH PROVIDED (USED) BY OPERATING ACTIVITIES				
Operating Income (Loss)	\$ (142,133)	\$ 39,682	\$ (492,667)	\$ (595,118)
Adjustments to Reconcile Operating Income (Loss) to Net Cash Provided				
(Used) By Operating Activities:				
Depreciation	261,416	174,562	293,131	729,109
Changes in Assets and Liabilities:				
Receivables	12,974	12,032	549	25,555
Materials	(4,654)	3,006	330	(1,318)
Accounts Payable	(192,613)	(58,559)	(14,808)	(265,980)
Deposits	(6,896)	(3,495)	10,988	597
Accrued Liabilities	8,789	(5,864)	(3,409)	(484)
Net Cash Provided (Used) By				
Operating Activities	\$ (63,117)	\$ 161,364	\$ (205,886)	\$ (107,639)

APPENDIX C

"146,000-Gallon Water Theft in Shelter Cove"

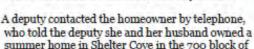
SEARCH LOWDOWN COMMENTS ELSEWHERE ABOUT

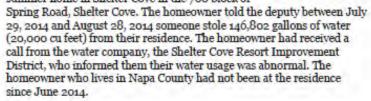
« Cutten Man Transported to Sempervirens Following Day of Assaults, Threats

21 Pounds o' Bud Found in Vehicle During Garberville Traffic Stop »

You, Gary Risling and 39,035 others like this. Gary Risling,

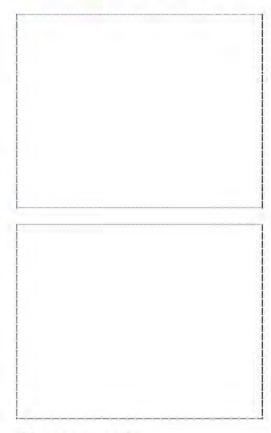
146,000-Gallon Water Theft in Shelter Cove


KYM KEMP / WEDNESDAY, SEPT. 24, 2014 @ 2:59 P.M. / CRIME



Humboldt County Sheriff's Office Press Release:

On 09-19-2014, at approximately 9:00 p.m., the Humboldt County Sheriff's Office received a call from a citizen who wanted to report a water theft. The citizen told the dispatcher over \$1,500.00 of water was stolen from a residence they owned.


The homeowner requested the water district check their residence for leaks or breaks in the water line, and to make sure the water meter was correct. The district checked the meter and residence and determined it was all in good working order.

The investigating deputy spoke with a neighbor who reported seeing a water trucks in the area. A spokesman with the water district reported they have had other water thefts from vacant summer homes, but not to this extent. They have also had thefts from hydrants. The spokesman said the water stolen in this case was approximately enough water to sustain a family of four for two years.

No suspect(s) have been identified at this time, the investigation is ongoing. The value of the water stolen is \$1,513.21.

The Sheriff's Office and water district would like to remind the public that due to the drought, water thefts are increasing in frequency. Absentee homeowners should have neighbors watching their residence and take steps to prevent theft of water.

Anyone with information for the Sheriffs Office regarding this case or related criminal activity is encouraged to call the Sheriffs Office at 707-445-7251, % or the Sheriffs Office Crime Tip line at 707-268-2539, %.

Comments

PEOPLE RECENT POPULAR

Recent Comments

Julie Timmons Love that map. Power Outage in Eureka - 1 minute ago

Stinky Weaselteets

Thank you! Someone else who appreciates this as the basis for a wretched argument for change of venue for her upcoming trial no doubt to the jurisdiction of "her ex" so she can be near the...

The Price of Trevor's Life' - Kimberly Steele Talks About the Pot Deal That Left a Man Dead - 1 minute ago

the misadventures of bunjee What is the point of all this public ranting? It's not like any of the readers can do anything about it. If there's legal issues surrounding elder care.

APPENDIX D

Sample Recycling Water Use Agreement

Resort Improvement District # 1 Residential Recycled Water Fill Station Program

Introduction

The Resort Improvement District (Agency) would like to expand its Recycled Water Program to offer residential customers the ability to reduce potable water consumption by using safe, non-potable disinfected tertiary-treated recycled water. Recycled water will be distributed to residents through a Residential Recycled Water Fill Station Program (Program) for landscape irrigation of residential yards, gardens and turf areas.

Program Description

The Program will be made available to any residential customer within Shelter Cove Area. The Residential Recycled Water Fill Station (Fill Station), to be located near the wastewater treatment plant property, will provide residents with access to recycled water for non-potable uses. Construction and operation of the Fill Station is designed to ensure the safe distribution and use of recycled water. Upon completion of the steps outlined in the Operating Procedures described below, residents may utilize the Agency's Fill Station free of charge.

Operating Procedures

Location, Access and Hours of Operation

- Fill Station to be located near the Shelter Cove's Waste Water Treatment Plant at the corner of Lower Pacific Dr. and north entrance of the golf course area.
- Fill Station hours of operation are anticipated to be Monday through Sunday from 8:00 AM to 5:00 PM.

Procedure to Obtain Recycled Water

1. Residents can obtain a Residential Recycled Water Fill Station Use

Application/Agreement form online at <u>sheltercove-ca.gov</u> or at Agency's office located at 9126 Shelter Cove Road, Whitethorn. Residents are encouraged to complete and review the application materials prior to their first visit.

- 2. First time customers will be required to complete an on-site fill station site orientation and training to learn about using the filling station and the proper handling and use of recycled water. Annual refresher training will be required for returning customers.
- 3. Agency's staff will verify that the Residential Recycled Water Fill Station Use Application/Agreement form has been completed. Each participant will be entered into a database, given a brief training about the use of recycled water, and provided with recycled water stickers for their containers.
- 4. Residents must bring their own sealable containers. Each of the containers brought by the resident must be appropriately labeled.

Resort Improvement District # 1 Residential Recycled Water Fill Station Use Application/Agreement

Customer Name:	
Address:	 _
City:	
Phone #:	
Email Address:	

Members of the public who agree to the terms and conditions regarding recycled water use are eligible to draw water from the system.

Things to know about the use of recycled water:

1. What is tertiary-treated recycled water and is it safe?

Recycled water is wastewater that has been processed through primary, secondary and tertiary treatment, and meet strict standards of the State Water Resources Control Board Division of Drinking Water. According to these standards, properly tertiary treated and disinfected recycled water is safe for non-potable uses listed within the California Code of Regulations Title 22.

2. What can I use recycled water for?

Based on DDW, Title 22 requirements, tertiary-treated recycled water can be used to water your trees, gardens, vegetables, and lawns.

3. What is this recycled water NOT suitable for?

- Drinking
- Hooking it to the household plumbing system
- Filling swimming pools or spas
- Cooking or use in the kitchen
- Children's water toys
- Bathing or showering

4. Why is recycled water not safe to drink? What happens if I drink it?

Tertiary-treated recycled water is not approved for drinking. However, it is treated to an extremely high standard and accidental consumption is not likely to make you ill. If you accidentally drink recycled water, there is no need to panic. Should you experience any adverse symptoms or feel unwell, consult your doctor.

5. Can I water my plants with recycled water?

Yes, all plants can be watered with recycled water. This includes edible plants such as fruit trees, vegetables and herbs. Just remember to wash all fruits, vegetables, and herbs with drinking water prior to consumption. Recycled water tends to have a higher salt content than drinking water. We advise you to direct the recycled water to the roots of the plants and not the foliage. This will protect them from potential leaf burn.

6.	No	water-use restrictions (conservation) apply to recycled water? . Water-use restrictions do not apply to recycled water. However, recycled water is a valuable ource and should not be wasted.					
	Who develops the health standards for recycled water? Recycled water is strictly monitored to ensure it meets water quality standards set by the State Water Resources Control Board Division of Drinking Water and the U.S. Environmental Protection Agency (EPA). How much will recycled water cost me?						
0.		thing, It's free.					
9. 1	Wha	at are the rules and regulations for residential use of recycled water?					
	a)	Use of this Program is subject to the procedures described in Item 11 below. By initialing this box, I certify that I understand this rule.					
	b)	Recycled water shall not be connected to any onsite plumbing system; this includes irrigation system or the onsite drinking water supply. By initialing this box, I certify that I understand this rule.					
	c)	Recycled water shall not be discharged to the street gutter or storm drain system. If you have leftover recycled water and want to dispose of it, either discharge it to a landscaped area or to the sanitary sewer system via an onsite cleanout. By initialing this box, I certify that I understand this rule.					
	d)	Recycled water shall not be applied where it could spray on external drinking water fountains, passing vehicles, buildings, or areas where food is handled or eaten. By initialing this box, I certify that I understand this rule.					
	e)	DO NOT DRINK recycled water or use it for food preparation. After working with recycled water remember, to apply hand sanitizer or wash hands with soap and domestic drinking water, especially before eating or smoking. By initialing this box, I certify that I understand this rule.					
	f)	Wash vegetables with drinking water prior to eating or cooking (the majority of the vegetables in the grocery stores are irrigated with recycled water). By initialing this box, I certify that I understand this rule.					
	g)	Ensure young children do not play with or drink recycled water. By initialing this box, I certify that I understand this rule.					
	h)	The District may conduct site visits at your property to ensure your proper use of recycled water and to ensure the health and safety of your family and the public. By initialing this box, I certify that I understand this rule.					
	i)	This Program is not eligible for delivery to and application at dual plumbed sites. Only the District can deliver recycled water to those sites. By initialing this box, I certify that I understand this rule.					
	j)	Recycled water may only be used at the address indicated in the customer's application form. By initialing this box, I certify that I understand this rule.					
	k)	Recycled water shall not be stored on site. By initialing this box, I certify that I understand this rule.					

Do not overfill containers or trucks. By initialing this box, I certify that I understand this rule.

m)	Hoses and containers used for the application of recycled water must be inspected prior to filling to ensure that they are cleaned of contaminants, in serviceable conditions, and free from leaks. By initialing this box, I certify that I understand this rule.						
n)	Containers must have water-tight seals and fittings to assure transport. By initialing this box, I certify that I understand this rule.	ners must have water-tight seals and fittings to assure no leaks or spills occur during ort. By initialing this box, I certify that I understand this rule.					
o)	Containers used to transport recycled water should not be us initialing	sed to carry drinking water. By g this box, I certify that I understand this rule					
p)	Recycled water shall not be applied where it could contact areaten, drinking water fountains, or faucets used for drinking that I understand this rule.						
q)	Residential customer cars should be equipped with an adequence should be promptly washed, disinfected, and bandaged. understand this rule.						
	tion Statement/Signature Section By checking this box, I certify that I understand all the cagree to comply with these conditions and to conform to equirements for recycled water use. Failure to comply wi	Resort Improvement District's					
C	agreement may lead to termination of this agreement and vater from Resort Improvement District's Residential Recyc	d the right to obtain recycled					
	By checking this box, I certify that I have completed the Resort Improvement District's Residential Recycled Water F						
	ners who fail to follow the requirements of the Program or County or local codes will result in suspension of the permi						
S	ignature	Date					
FOR OF	FICE USE ONLY - Resort Improvement District Approval						
1	Name	Date					

APPENDIX E

Monitoring and Reporting Program in Order No. R1-2015-0017 of NPDES Permit No. CA0023027

ATTACHMENT E - MONITORING AND REPORTING PROGRAM

Table of Contents

Attachment E - Monitoring and	Reporting Program (MRP)	E-2
	ions	
II. Monitoring Locations		E-2
III. Influent Monitoring Require	ements	E-3
	F-001	
	ements	
A. Monitoring Location E	FF-001	E-3
	sting Requirements	
VI. Land Discharge Monitoring	g Requirements	E-8
	equirements	
VIII. Receiving Water Monitorin	ng Requirements - Surface Water and Groundwater.	E-9
A. Monitoring Location R	EF-001	E-9
IX. Other Monitoring Requirer	nents	E-9
X. Reporting Requirements		E-10
 A. General Monitoring ar 	nd Reporting Requirements	E-10
	ts (SMRs)	
C. Discharge Monitoring	Reports (DMRs)	E-13
D. Other Reports		E-13
	List of Tables	
	List of Tables	
	_ocations	
	Monitoring Location EFF-001	
	hronic Toxicity	
Table E-5. Reclamation Monito	oring, Monitoring Location REC-001	E-8
Table E-6. Recycled Water Pro	oduction and Use	E-8
Table E-7. Monitoring Periods	and Reporting Schedule	E-11

ATTACHMENT E - MONITORING AND REPORTING PROGRAM (MRP)

The Code of Federal Regulations section 122.48 requires that all NPDES permits specify monitoring and reporting requirements. Water Code sections 13267 and 13383 also authorize the Regional Water Quality Control Board (Regional Water Board) to require technical and monitoring reports. This MRP establishes monitoring and reporting requirements, which implement the federal and California regulations.

I. GENERAL MONITORING PROVISIONS

- **A.** Wastewater Monitoring Provision. Composite samples may be taken by a proportional sampling device approved by the Executive Officer or by grab samples composited in proportion to flow. In compositing grab samples, the sampling interval shall not exceed one hour.
- **B.** If the Discharger monitors any pollutant more frequently than required by this Order, using test procedures approved by 40 CFR section 136 or as specified in this Order, the results of such monitoring shall be included in the calculation and reporting of the data submitted in the monthly and annual discharger monitoring reports.
- **C.** Laboratories analyzing monitoring samples shall be certified by the Department of Public Health, in accordance with the provision of Water Code section 13176, and must include quality assurance/quality control data with their reports.

II. MONITORING LOCATIONS

The Discharger shall establish the following monitoring locations to demonstrate compliance with the effluent limitations, discharge specifications, and other requirements in this Order.

Table E-1. Monitoring Station Locations

Table E-1. Monitoring Station Eccations				
Discharge Point	Monitoring Location	Monitoring Location Description		
	INF-001	Influent wastewater prior to treatment and following all significant input of wastewater to the treatment system.		
001	EFF-001	Location where representative samples of discharges from the treatment system can be collected, following all treatment and contributions to the waste stream, including dechlorination, but prior to contact with the receiving water.		
002	REC-001	Location where representative samples of treated wastewater, to be used for irrigation, can be collected, following all treatment and prior to its application for irrigation.		
	REF-001	Location in the vicinity of the outfall diffuser in the Pacific Ocean.		

III. INFLUENT MONITORING REQUIREMENTS

A. Monitoring Location INF-001

1. The Discharger shall monitor intake water to the seawater system at Monitoring Location INF-001 as follows.

Table E-2. Influent Monitoring

Parameter	Units	Sample Type	Sampling Frequency	Required Analytical Test Method
BOD ₅ (20°C)	mg/L	8-hr Composite	Monthly	Standard Methods
TSS	mg/L	8-hr Composite	Monthly	Standard Methods
Flow	MGD	Continuous	Continuous	Meter

IV. EFFLUENT MONITORING REQUIREMENTS

A. Monitoring Location EFF-001

 The Discharger shall monitor treated wastewater to be discharged to the Pacific Ocean prior to contact with the receiving water at Monitoring Location EFF-001 as follows.

Table E-3. Effluent Monitoring, Monitoring Location EFF-001

Parameter	Units	Sample Type	Sampling Frequency	Required Analytical Test Method
Effluent Flow	mgd	Continuous	Continuous	Meter
BOD₅20°C	mg/L	8-hr Composite	Monthly	SM 5210 B
pH	S.U.	Grab	Daily	40 CFR 136
TSS	mg/L	8-hr Composite	Monthly	SM 2540 D
Settleable Solids	mL/L-hr	Grab	Daily	Standard Methods
Turbidity	NTU	Grab	Daily	SM 2130 B
Total Coliform Bacteria	MPN/ 100 mL	Grab	Weekly	SM 9221
Total Residual Chlorine ¹	μg/L	Grab	Daily	Standard Methods
Ammonia	mg/L N	Grab	Quarterly ²	40 CFR 136
Copper	μg/L	24-hr Composite	Quarterly ²	40 CFR 136
Zinc	μg/L	24-hr Composite	Quarterly ²	40 CFR 136
TCDD Equivalents	pg/L	24-hr Composite	2X/Year	40 CFR 136
Chronic Toxicity	TUc	Grab	Annually	40 CFR 136

Chlorine residual must be monitored and reported twice – at the completion of the disinfection process prior to dechlorination and then again following dechlorination.

Quarterly monitoring at Monitoring Location EFF-001 is not required during a calendar quarter when there has been no discharge to Discharge Point 001.

Parameter	Units	Sample Type	Sampling Frequency	Required Analytical Test Method
Remaining Ocean Plan Table B Pollutants	μg/L	Grab/ Composite ³	Annually	40 CFR 136

V. WHOLE EFFLUENT TOXICITY TESTING REQUIREMENTS

A. Chronic Toxicity Testing

The Discharger shall conduct chronic toxicity testing to demonstrate compliance with the Ocean Plan's water quality objective for toxicity. The Discharger shall meet the following chronic toxicity testing requirements:

- 1. **Test Frequency**. The Discharger shall conduct annual chronic WET testing at Discharge Point 001.
- Sample Type. For 96-hour static renewal or 96-hour static non-renewal testing, effluent samples from Monitoring Location EFF-001 shall be grab samples that are representative of the volume and quality of the discharge from the facility. For toxicity tests requiring renewals, grab samples collected on consecutive days are required.
- 3. Test Species. Critical life stage bioassay testing shall be conducted using an approved test, and test species, as described by Table III-1 of the Ocean Plan and presented below. Initial testing shall be conducted with a vertebrate, an invertebrate, and a plant species, and thereafter, monitoring can be reduced to the most sensitive species.

Table E-4. Approved Tests—Chronic Toxicity

Species	Test	Tier ¹	Reference ²
Giant kelp, Macrocystis pyrifera	percent germination; germ tube length	1	a, c
Red abalone, Haliotis rufescens	abnormal shell development	1	a, c
Oyster, Crassostrea gigas; mussels, Mytilus spp.	abnormal shell development; percent survival	1	a, c
Urchin, Strongylocentrotus purpuratus; sand dollar, Dendraster excentricus	percent normal development	1	a, c
Urchin, Strongylocentrotus purpuratus; sand dollar, Dendraster excentricus	percent fertilization	1	a, c
Shrimp, Homesimysis costata	percent survival; growth	1	a, c
Shrimp, Mysidopsis bahia	percent survival; fecundity	2	b, d

For volatile constituents, grab samples of at least 100 ml shall be collected over a period not exceeding 15 minutes.

Species	Test	Tier ¹	Reference ²
Topsmelt, Atherinops affinis	larval growth rate; percent survival	1	a, c
Silverside, Menidia beryllina	larval growth rate; percent survival	2	b, d

First tier methods are preferred for compliance monitoring. If first tier organisms are not available, the Discharger can use a second tier test method following approval by the Regional Water Board.

Protocol References:

- a. Chapman, G.A., D.L. Denton, and J.M. Lazorchak. 1995. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms. U.S. EPA Report No. EPA/600/R-95/136.
- b. Klemm, D.J., G.E. Morrison, T.J. Norberg-King, W.J. Peltier, and M.A. Heber. 1994. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Water to Marine and Estuarine Organisms. U.S. EPA Report No. EPA-600-4-91-003.
- SWRCB 1996. Procedures Manual for Conducting Toxicity Tests Developed by the Marine Bioassay Project. 96-1WQ.
- d. Weber, C.I., W.B. Horning, I.I., D.J. Klemm, T.W. Nieheisel, P.A. Lewis, E.L. Robinson, J. Menkedick and F. Kessler (eds). 1998. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Marine and Estuarine Organisms. EPA/600/4-87/028. National Information Service, Springfield, VA.
- 4. Test Methods. The presence of chronic toxicity shall be estimated as specified in USEPA's Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Water to West Coast Marine and Estuarine Organisms (USEPA Report No. EPA/600/R-95/136, or subsequent editions).
- 5. **Test Dilutions.** Chronic WET tests on effluent samples shall be conducted using dilutions of 1%, 2%, 5%, 7.5%, and 10 percent, and a control. Control and dilution water shall be either receiving water collected beyond the influence of the discharge or lab synthesized water. If the dilution water used is different from the culture water, a second control using culture water shall be used.
- 6. Reference Toxicant. If organisms are not cultured in-house, concurrent testing with a reference toxicant shall be conducted. Where organisms are cultured in-house, monthly reference toxicant testing is sufficient. Reference toxicant tests also shall be conducted using the same test conditions as the effluent toxicity tests (e.g., same test duration, etc).
- 7. Test Failure. If either the reference toxicant test or the chronic toxicity test does not meet all test acceptability criteria, as specified in the test method, the Discharger shall re-sample and re-test as soon as possible, not to exceed 7 days following notification of test failure.
- 8. Accelerated Monitoring Requirements. If the result of any chronic toxicity test exceeds the dilution-adjusted chronic toxicity water quality objective, as specified in section IV.A.1 of the Order, and the testing meets all test acceptability criteria, the

Discharger shall initiate accelerated monitoring. Accelerated monitoring shall consist of four additional samples – with one test conducted approximately every week over a four week period. Testing shall commence within 14 days of receipt of initial sample results which indicated an exceedance of the chronic toxicity water quality objective. If the discharge will cease before the additional samples can be collected, the Discharger shall contact the Executive Officer within 21 days with a plan to address elevated levels of chronic toxicity in effluent and/or receiving water. The following protocol shall be used for accelerated monitoring and TRE implementation:

- a. If the results of four consecutive accelerated monitoring tests do not exceed the dilution-adjusted chronic toxicity water quality objective, the Discharger may cease accelerated monitoring and resume regular chronic toxicity monitoring. However, if there is adequate evidence of a pattern of effluent toxicity, the Regional Water Board's Executive Officer may require that the Discharger initiate a TRE.
- b. If the source(s) of the toxicity is easily identified (i.e. temporary plant upset), the Discharger shall make necessary corrections to the facility and shall continue accelerated monitoring until four (4) consecutive accelerated tests do not exceed the dilution-adjusted water quality objective. Upon confirmation that the chronic toxicity has been removed, the Discharger may cease accelerated monitoring and resume regular chronic toxicity monitoring.
- c. If the result of any accelerated toxicity test exceeds the dilution-adjusted chronic toxicity water quality objective the Discharger shall cease accelerated monitoring and initiate a TRE to investigate the cause(s) and identify corrective actions to reduce or eliminate the chronic toxicity. Within thirty (30) days of notification by the laboratory of the test results exceeding the dilution-adjusted chronic toxicity water quality objective during accelerated monitoring, the Discharger shall submit a TRE Action Plan to the Regional Water Board including, at minimum:
 - (1) Specific actions the Discharger will take to investigate and identify the cause(s) of toxicity, including a TRE WET monitoring schedule;
 - (2) Specific actions the Discharger will take to mitigate the impact of the discharge and prevent the recurrence of toxicity; and

(3) A schedule for these actions.

C. Chronic Toxicity Reporting

- Routine Reporting. Test results for chronic WET tests shall be reported according
 to the appropriate chronic guidance manual and this Monitoring and Reporting
 Program and shall be attached to the self-monitoring report. Test results shall
 include, at a minimum, for each test:
 - a. sample date(s)
 - b. test initiation date
 - c. test species
 - d. end point values for each dilution (e.g., number of young, growth rate, and percent survival)
 - e. NOEC value(s) in percent effluent
 - f. IC15, IC25, IC40, and IC50 values (or EC15, EC25...etc.) in percent effluent
 - g. TUc values (100/NOEC)
 - h. Mean percent mortality (±s.d.) after 96 hours in 100 percent effluent (if applicable)
 - i. NOEC and LOEC values for reference toxicant test(s)
 - j. IC50 or EC50 value(s) for reference toxicant test(s)
 - k. Available water quality measurements for each test (e.g., pH, DO, temperature, conductivity, hardness, salinity, ammonia)
 - I. Statistical methods used to calculate endpoints.
- 2. **Quality Assurance Reporting.** Because the permit requires sublethal hypothesis testing endpoints from methods 1006.0 and 1007.0 in the test methods manual titled *Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Marine and Estuarine Organisms* (EPA-821-R-02-014, 2002), with-in test variability must be reviewed for acceptability and variability criteria (upper and lower PMSD bounds) must be applied, as directed under section 10.2.8 *Test Variability* of the test methods manual. Under section 10.2.8, the calculated PMSD for both reference toxicant test and effluent toxicity test results must be compared with the upper and lower PMSD bounds variability criteria specified in Table 6 *Variability Criteria (Upper and Lower PMSD Bounds) for Sublethal Hypothesis Testing Endpoints Submitted Under NPDES Permits*, following the review criteria in paragraphs 10.2.8.2.4.1 through 10.2.8.2.4.5 of the test methods manual. Based on this review, only accepted effluent toxicity test results shall be reported.

3. Compliance Summary: The results of the chronic toxicity testing shall be provided in the most recent self-monitoring report and shall include a summary table organized by test species, type of test (survival, growth or reproduction) and monitoring frequency (routine, accelerated or TRE) of toxicity data from at least three of the most recent samples. The final report shall clearly demonstrate that the Discharger is in compliance with Ocean Plan water quality objectives and other permit requirements.

VI. LAND DISCHARGE MONITORING REQUIREMENTS

Not applicable

VII. RECLAMATION MONITORING REQUIREMENTS

A. During the period the recycled water is being irrigated onto the golf course, the following monitoring shall be conducted at Monitoring Location REC-001.

Table E-5. Reclamation Monitoring, Monitoring Location REC-001

Parameter	Units	Sample Type	Sampling Frequency	Required Analytical Test Method
Effluent Flow	mgd	Continuous	Continuous	Meter
BOD ₅ (20°C)	mg/L	8-hr Composite	Weekly	SM 5210 B
рН	s.u.	Grab	Weekly	40 CFR 136
TSS	mg/L	8-hr Composite	Weekly	SM 2540 D
Total Coliform Bacteria	MPN/100 ml	Grab	Weekly	SM 9221
Total Residual Chlorine	μg/L	Continuous	Continuous	Meter
Turbidity	NTU	Continuous	Continuous	Meter

B. Recycled Water Production and Use. Recycled water quality characteristics shall be used to ascertain nitrogen loading rates. The following information shall be reported:

Table E-6. Recycled Water Production and Use

Parameter	Units	Sample	Frequency		
		Туре	Sampling	Reporting	
Volume of recycled water ^{1,2}	Acre-feet	Meter	Monthly ³	Annual	
Total area of application ^{4,5}	Acres	Observation	Monthly	Annual	
Nitrogen application rate	Lbs/acre- month	Calculation	Monthly	Annual	
	1	<u> </u>		ı	

- ¹ Estimation of the volume of the recycled water shall not include other potable or non-potable "make-up" water also used for golf course irrigation.
- ² May be estimated based on daily percentage of recycled water supplied via a non-potable water supply system.
- May be based on available date (e.g., meters read every other month or quarterly).
- ⁴ Nitrogen application rate shall consider nutrients contained in the recycled water, based on analytical data obtained by the Discharger.
- ⁵ Nitrogen concentrations shall be calculated and reported "as N." for example, nitrate-nitrogen = 27 mg/L as NO₃ shall be converted and reported as nitrate-nitrogen = 6 mg/L as N.
- **C. Recycling Observations.** When water is being recycled on the golf course, daily observations shall be conducted. Observations shall include:
 - 1. Saturated or ponded conditions,
 - 2. Runoff or windblown spray/mist,
 - 3. Leaky or broken pipes or sprinklers, and
 - 4. Climate conditions.

VIII. RECEIVING WATER MONITORING REQUIREMENTS – SURFACE WATER AND GROUNDWATER

A. Monitoring Location REF-001

1. Biological Survey. The Discharger shall conduct a comparative evaluation of indigenous biota in the vicinity of the outfall using a qualified aquatic biologist, at least once every 5 years. The biologist shall prepare a report of observations, including objectionable aquatic growths, floating particulates or grease and oil, aesthetically undesirable discoloration of the ocean surface, color of fish or shellfish, and any evidence of degradation of indigenous biota attributable to the rate of deposition of inert solids, settleable material, nutrient materials, increased concentrations of organic materials, or increased concentrations of Ocean Plan Table B substances. The Discharger shall submit to the Regional Water Board Executive Officer for approval a Biological Survey work plan no later than March 1, 2011 in order to complete the survey and prepare a final report by the due date for receipt of an application for permit renewal. The final report shall be submitted no later than August 1, 2014.

IX. OTHER MONITORING REQUIREMENTS

A. Sludge Disposal Monitoring.

The Permittee shall monitor the quantity of sludge processed and its ultimate disposal. The approximate quantity and disposition of other solid wastes generated by the Facility shall be described as necessary.

B. Photographic Survey of Intertidal Flora and Fauna

At least once during the five year term of this Order, the Discharger shall conduct a photographic survey of the intertidal flora and fauna in the vicinity of Discharge Point 001 in accordance with section VI.C.2. of this Order. The photographic survey may be conducted in conjunction with the comparative biological survey of the outfall required in VIII.A of the MRP.

C. Analysis of Influent Flow and Treatment Capacity

Once during the five year term of this Order, the Discharger shall prepare a report documenting and comparing the projected wet and dry weather flows to flow projected for the Facility in 2019 (the anticipated expiration year of the next discharge permit to be issued to the facility) in accordance with section VI.C.2. of this Order.

D. Outfall Inspection

Divers shall visually inspect the outfall structure, including the diffuser ports, at least once during the life of this permit to verify operational status of the outfall. A report documenting outfall condition and maintenance, including any observed cracks, breaks, malfunctions, and appropriate repairs, shall be submitted within 90 days of completing the inspection and no later than **August 1, 2014**. The Discharger shall submit to the Regional Water Board Executive Officer for approval an Outfall Inspection work plan no later than **September 1, 2010**.

X. REPORTING REQUIREMENTS

A. General Monitoring and Reporting Requirements

1. The Discharger shall comply with all Standard Provisions (Attachment D) related to monitoring, reporting, and recordkeeping.

B. Self Monitoring Reports (SMRs)

- 1. At any time during the term of this permit, the State or Regional Water Board may notify the Discharger to electronically submit Self-Monitoring Reports (SMRs) using the State Water Board's California Integrated Water Quality System (CIWQS) Program Web site (http://www.waterboards.ca.gov/ciwqs/index.html). Until such notification is given, the Discharger shall submit hard copy SMRs. The CIWQS Web site will provide additional directions for SMR submittal in the event there will be service interruption for electronic submittal.
- The Discharger shall report in the SMR the results for all monitoring specified in this MRP under sections III through IX. The Discharger shall submit monthly and annual summary SMRs including the results of all required monitoring using USEPA-

approved test methods or other test methods specified in this Order. If the Discharger monitors any pollutant more frequently than required by this Order, the results of this monitoring shall be included in the calculations and reporting of the data submitted in the SMR.

3. Monitoring periods and reporting for all required monitoring shall be completed according to the following schedule:

Table E-7. Monitoring Periods and Reporting Schedule

Sampling Frequency	Monitoring Period Begins On	Monitoring Period	SMR Due Date
Continuous	January 29, 2010	All	First day of second calendar month following month of sampling
Daily	January 29, 2010	Midnight through 11:59 PM or any 24-hour period that reasonably represents a calendar day for purposes of sampling.	First day of second calendar month following month of sampling
Weekly	January 31, 2010	Sunday through Saturday	First day of second calendar month following month of sampling
Monthly	February 1, 2010	1 st day of calendar month through last day of calendar month	First day of second calendar month following month of sampling
Quarterly	January 1, 2010	January 1 through March 31 April 1 through June 30 July 1 through September 30 October 1 through December 31	March 1 each year
2x/Year	January 1, 2010	January 1 through June 30 July 1 through December 31	March 1 each year
Annually	January 1, 2010	January 1 through December 31	March 1 each year
Once During Order Term	January 1, 2010	January 1 through December 31	August 1, 2014

4. Reporting Protocols. The Discharger shall report with each sample result the applicable Reporting Level (RL) and the current Method Detection Limit (MDL), as determined by the procedure in Part 136.

The Discharger shall report the results of analytical determinations for the presence of chemical constituents in a sample using the following reporting protocols.

a. Sample results greater than or equal to the RL shall be reported as measured by the laboratory (i.e., the measured chemical concentration in the sample).

- b. Sample results less than the RL, but greater than or equal to the laboratory's MDL, shall be reported as "Detected, but Not Quantified," or DNQ. The estimated chemical concentration of the sample shall also be reported.
 - For the purposes of data collection, the laboratory shall write the estimated chemical concentration next to DNQ as well as the words "Estimated Concentration" (may be shortened to "Est. Conc."). The laboratory may, if such information is available, include numerical estimates of the data quality for the reported result. Numerical estimates of data quality may be percent accuracy (± a percentage of the reported value), numerical ranges (low to high), or any other means considered appropriate by the laboratory.
- c. Sample results less than the laboratory's MDL shall be reported as "Not Detected," or ND.
- d. Dischargers are to instruct laboratories to establish calibration standards so that the ML value (or its equivalent if there is differential treatment of samples relative to calibration standards) is the lowest calibration standard. At no time is the Discharger to use analytical data derived from *extrapolation* beyond the lowest point of the calibration curve.
- 5. The Discharger shall submit SMRs in accordance with the following requirements:
 - a. The Discharger shall arrange all reported data in a tabular format. The data shall be summarized to clearly illustrate whether the facility is operating in compliance with interim and/or final effluent limitations. The reported data shall include calculation of all effluent limitations that require averaging, taking of a median or other computation. The Discharger is not required to duplicate the submittal of data that is entered in a tabular format within CIWQS. When electronic submittal of data is required and CIWQS does not provide for entry into a tabular format within the system, the Discharger shall electronically submit the data in a tabular format as an attachment. During periods of land discharge, the reports shall certify "land discharge".
 - b. The Discharger shall attach a cover letter to the SMR. The information contained in the cover letter shall clearly identify:
 - (1) Facility name
 - (2) WDID number
 - (3) Applicable period of monitoring and reporting
 - (4) Violations of the WDRs (identified violations must include a description of the requirement that was violated and a description of the violation)

(5) Corrective actions taken or planned; and

- (6) The proposed time schedule for corrective actions.
- c. SMRs must be submitted to the Regional Water Board, signed and certified as required by the Standard Provisions (Attachment D), to the address listed below:

North Coast Regional Water Quality Control Board 5550 Skylane Blvd, Suite A Santa Rosa, CA 95403

C. Discharge Monitoring Reports (DMRs)

- As described in Section X.B.1 above, at any time during the term of this permit, the State or Regional Water Board may notify the Discharger to electronically submit SMRs that will satisfy federal requirements for submittal of Discharge Monitoring Reports (DMRs). Until such notification is given, the Discharger shall submit DMRs in accordance with the requirements described below.
- DMRs must be signed and certified as required by the standard provisions (Attachment D). The Discharge shall submit the original DMR and one copy of the DMR to the address listed below:

Standard Mail	FedEx/UPS/ Other Private Carriers
State Water Resources Control Board	State Water Resources Control Board
Division of Water Quality	Division of Water Quality
c/o DMR Processing Center	c/o DMR Processing Center
PO Box 100	1001 I Street, 15 th Floor
Sacramento, CA 95812-1000	Sacramento, CA 95814

3. All discharge monitoring results must be reported on the official USEPA pre-printed DMR forms (EPA Form 3320-1). Forms that are self-generated or modified cannot be accepted.

D. Other Reports

- 1. The Discharger shall report the results of any special studies required by Special Provisions VI. C. 2. a., b., and c., of this Order.
- 2. **Annual Report.** The Discharger shall submit an Annual Report to the Regional Water Board for each calendar year. The report shall be submitted by March 1st of the following year. The report shall, at a minimum, include the following.
 - a. Both tabular and, where appropriate, graphical summaries of the monitoring data from the previous year. If the Discharger monitors any pollutant more frequently than required by this Order, using test procedures approved under section 136 or

- as specified in this Order, the results of this monitoring shall be included in the calculation and report of the data submitted SMR.
- b. A comprehensive discussion of the facility's compliance (or lack thereof) with all effluent limitations and other WDRs, and the corrective actions taken or planned, which may be needed to bring the discharge into full compliance with the Order.
- c. The amount of screenings, sludges, and other solids removed from liquid wastes that year, reported in dry metric tons, and the amount accumulated from previous years.
- d. For all sludge used as a soil amendment, the results of all pollutant and pathogen monitoring, reported on a 100 percent dry weight basis for comparison with 40 CFR part 503 limitations. Any sample results reported on a wet weight basis shall report the percent solids of that sample. Descriptions of methods used to achieve pathogen reduction and vector attraction reduction, including supporting time and temperature, and certifications required in sections 503.17 and 503.27.
- For all sludge used or disposed at the Discharger's facilities, the site and management practice information and certification required in sections 503.17 and 503.27, and
- f. For all sludge temporarily stored, the information required in section 503.20 to demonstrate temporary storage.
- g. Names and addresses of entities receiving sludge for further treatment, use, or disposal, and volumes sent to each.
- 3. **Recycled Water Production and Use.** The results of production monitoring and calculations to determine nitrogen application rates described in Section VII.B. of the MRP shall be submitted with the annual monitoring reports.
- Recycling observations. The observations described in Section VII.C of the MRP shall be recorded daily and submitted with the monthly monitoring reports. Observed violations and corrective measures shall be noted in the report.

APPENDIX F

Do Not Drink Sign

In recycled water use areas, public warning signs with wording of "DO NOT DRINK, GOLF COURSE IRRIGATED WITH RECLAIMED WATER" are installed

APPENDIX G

Recycled Water Sign Used by Fire Trucks

Appendix G

Informational signs with wording "RECLAIMED WATER" that are posted on both sides of a water tanker trucks used for fire protection.

APPENDIX H

Recycled Water Truck Program Guidelines

Resort Improvement District #1 9126 Shelter Cove Rd, Whitethorn, CA 95589

Recycled Water Truck Program Guidelines

(Updated October 21, 2015)

These Recycled Water Truck Program Guidelines specify requirements for the Recycled Water Truck Program (RWTP) being implemented for use of recycled water generated at the Resort Improvement Distric's Waste Water Treatnment Plant. The Resort Improvement District ("Agency") is the owner and/or operator of the sanitation facilities.

Recycled Water Quality: The RWTP supplies clean, safe recycled water that has been through a treatment process that includes aeration, disinfection and filtration at some of the sanitation facilities. Recycled water treated to these levels meets the rigorous and protective standards set by the California Department of Public Health.

General Program Requirements

- 1. Customers with trucks interested in getting recycled water must apply for a Recycled Water Use Permit. The application may be obtained as follows:
 - a. In person, at the Agency's Office at 9126 Shelter Cove Rd, Whitethorn
 - b. By downloading the form from website
- 2. Application forms must be completed and returned, with copies of required documents attached (photocopies, PDFs, scanned documents acceptable), to the Agency's Office. Options for submitting completed applications include:
 - a. Mail to Resort Improvement District at 9126 Shelter Cove Rd. Whitethorn, CA 95589
 - b. Email.... c. • Fax to.....
- 3. Tank trucks must be equipped with an air gap.
- 4. Truck owners must show proof of vehicle liability insurance and worker's compensation insurance meeting minimum requirements specified in the application (copies must be attached to permit application).
- 5. Truck owners must show proof of valid truck registration (a copy for each truck registration must be attached to permit application).
- 6. Before trucks can be filled for the first time, all truck owners and/or drivers are required to attend a brief on-site orientation/training in order to learn about using the filling station and the proper handling and use of recycled water. The Agency will schedule the on-site orientation/training and inform customers of the date, time, and location.

- 7. Once the customer completes the on-site orientation/training and the Agency verifies the required air gap, Agency will issue a signed Recycled Water Use Permit along with three magnetic recycled water signs to affix to the customer's truck (both sides and rear). Agency provides the first set of signs at no charge; the customer will have to pay (at cost) for any replacement signs. Customers who use Agency's recycled water filling station also will be issued a decal for truck tracking purposes. This decal(s) must be affixed onto the truck(s) front right (passenger-side) bumper(s).
- 8. The Recycled Water Use Permit must be available for inspection at all times. The recycled water user/user's agent must carry a copy of the agreement in the truck.

Wastewater Treatment Plant Requirements

- 1. Recycled water is available near the Agency's Wastewater Treatment Plants identified above, (Agency provides maps and directions to the plant and to the recycled water filling station.)
- 2. Trucks must have an affixed Agency -issued decal and appropriately-placed recycled water signage.
- 3. **NO IDLING**. Please turn off your truck engine while filling or waiting at the filling station.
- 4. In the event of an emergency, the truck driver needs to call (707) 986-7447 for further instructions.
- 5. Do **not** leave any trash or debris at the filling station area.

Recycled Water Handling and Use Requirements/Precautions

- 1. Do **not** drink recycled water or use it for food preparation. Additionally, the truck driver must notify workers and/or the public when recycled water is used at a site and tell them that they are not to drink recycled water or use it for food preparation.
- Recycled water users should apply hand sanitizer or wash their hands with soap and potable water after working with recycled water and especially before eating or smoking.
- 3. Precautions should be taken to avoid food coming into contact with recycled water while the use site is still wet.
- 4. Truck drivers should be equipped with an adequate first aid kit. Cuts or abrasions should be promptly washed, disinfected, and bandaged.
- 5. Recycled water shall not be allowed to spray onto external drinking water fountains or faucets used for potable water.

- 6. Recycled water shall not be applied where it could contact or enter passing vehicles, buildings, areas where food is handled or eaten, or storm drains.
- 7. Recycled water users shall take adequate measures to prevent overspray, ponding, or run off of recycled water from the authorized recycled water use area unless it is specifically allowed by the Regional Water Quality Control Board or by an attachment to the Recycled Water Use Permit issued by Agency.
- 8. There shall be no irrigation or impoundment of recycled water within a minimum of 50 feet of any domestic (drinking water) well using tertiary treated or within 100 feet of any domestic (drinking water) well using secondary treated.
- 9. Vehicles used for transportation and distribution of recycled water must have water-tight valves and fittings, and must not leak.
- 10. Vehicle recycled water storage tanks must be cleaned of contaminants prior to use. A truck or tank that has contained material from a septic tank, cesspool or hazardous waste shall not be used to convey recycled water. Truck storage tanks for the storage and transport of recycled water must comply with all federal, state of California and local requirements for the storage and transport of water that is to be reused. Storage tanks cannot have prior use of carrying substances that are hazardous, within the meaning of federal or state of California definitions of hazardous or toxic materials, wastes or substances or poison. Storage tanks must be clean of all substances to prevent contamination with residue.
- 11. Recycled water must not be introduced into any permanent piping system and no connection shall be made between the tank truck and any part of a potable water system.
- 12. User must comply with all requirements and restrictions specified by the Regional Water Quality Control Board and the California Department of Public Health Title 22.
- 13. Tank trucks used to transport recycled water should not be used to carry potable water unless approved by the California Department of Public Health Food and Drug Branch.

signature	Date	
Print Name		
Company		
California Driver License Number:		